

- الر جاء كتابة اسمُك و ر ققكك الجامهي في المكان المخصص أسفل هله الصفحة. - تـٔكد مز حصو لك على جميع الأسئلة.
 - الرجاء أغلق الجو ال و عدم أستخدامه خلال الاختبـار.

> السؤالينالأو ل و الثالث أجبار يـان.
> • الزمز المحلدد لهلذا الإختبار 120 دقيقة.
> • بـالتو فيق إن شاء الله.

Question:	1	2	3	4	5	6	7	Total
Points:	25	11	30	11	11	11	11	110
Score:								

Name: \qquad

Student's I.N.: \qquad

1. Let $\alpha, \beta, x \in \mathbb{R},\left\{x_{n}\right\}$ be a sequence of real numbers, and let $A \subseteq \mathbb{R}$ be bounded set. State the definition of the following:
(a) α is the supremum of A.

Solution:

α is the supremum of A if it satisfies the conditions:
(1) α is an upper bound of A (i.e. $a \leq \alpha$ for all $a \in A$.), and
(2) If v is any upper bound of A then $\alpha \leq v$.
(b) β is the infimum of A.

Solution:

β is the infimum of A if it satisfies the conditions:
(1) β is a lower bound of A (i.e. $\beta \leq a$ for all $a \in A$.), and
(2) If t is any lower bound of A, then $t \leq \beta$.
(c) The completeness axiom of \mathbb{R}.

Solution:

Every nonempty subset of \mathbb{R} that has an upper bound also has a supremum in \mathbb{R}.
(d) The Density of \mathbb{Q}.

Solution:

If $a, b \in \mathbb{R}$ with $a<b$, then there exist a rational number $r \in \mathbb{Q}$ such that $a<r<b$.
(e) The sequence $\left\{x_{n}\right\}$ converges to x.

Solution:

The sequence $\left\{x_{n}\right\}$ converges to $x \in \mathbb{R}$ if for every $\epsilon>0$ there exists a natural number $N=N(\epsilon) \in \mathbb{N}$ such that if $n>N \Rightarrow\left|x_{n}-x\right|<\epsilon$, and we write $\lim _{n \rightarrow \infty} x_{n}=x$.
2. (a) Let $\left\{x_{n}\right\}$ be a sequence and $x, y \in \mathbb{R}$. If $\lim _{n \rightarrow \infty} x_{n}=x$, and $\lim _{n \rightarrow \infty} x_{n}=y$. Prove that $y=x$

Solution:

Let $\epsilon>0$ be given. Since $\lim _{n \rightarrow \infty} x_{n}=x$, then there exist $N_{1} \in \mathbb{N}$ such that if $n>N_{1} \Rightarrow\left|x_{n}-x\right|<\frac{\epsilon}{2}$. Since $\lim _{n \rightarrow \infty} x_{n}=y$, then there exist $N_{2} \in \mathbb{N} \ni$ if $n>N_{2} \Rightarrow$ $\left|x_{n}-x\right|<\frac{\epsilon}{2}$. Now, Let $N=\max \left\{N_{1}, N_{2}\right\}$. If $n>N$, then $n>N_{1}, \Rightarrow\left|x_{n}-x\right|<\frac{\epsilon}{2}$ and if $n>N$, then $n>N_{2}, \Rightarrow\left|x_{n}-y\right|<\frac{\epsilon}{2}$. Then $|x-y|=\left|x-x_{N+1}+x_{N+1}-y\right| \leq$ $\left|x-x_{N+1}\right|+\left|x_{N+1}-y\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Hence $0 \leq|x-y| \leq \epsilon$. Thus $|x-y|=0$. Therefore $x=y$.
(b) Let $x_{n}=\frac{n+1}{2 n+1}$. Use the definition of the limit of a sequence to prove that $\lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}=\frac{1}{2}$.

Solution:

Discussion:

We start with $\epsilon>0$ and want to find $N=N(\epsilon) \in \mathbb{N}$ such that if $n>n \Rightarrow$ $\left|\frac{n+1}{2 n+1}-\frac{1}{2}\right|<\epsilon$.
$\left|\frac{n+1}{2 n+1}-\frac{1}{2}\right|=\left|\frac{2(n+1)-(2 n+1)}{2(2 n+1)}\right|$
$=\left|\frac{2 n+2-2 n-1}{4 n+2}\right|$
$=\left|\frac{1}{4 n+2}\right|$
$\leq \frac{1}{4 n+1}$
$=\frac{1}{4 n}$ Note that: $4 n+1 \geq 4 n$
$\leq \frac{1}{4 n} \quad$ Note that: $4 n+1 \geq 4 n \Leftrightarrow \frac{1}{4 n+1} \leq \frac{1}{4 n}$
$=\frac{1}{4 n}$.
$\Leftrightarrow n>\frac{1}{4 \epsilon}$.
Now, since $\frac{1}{4 \epsilon}$ may not by an natural number, we let $N=N(\epsilon)>\frac{1}{4 \epsilon}$.
Proof:
Let $\epsilon>0$ be given. Let $N \in \mathbb{N}$ such that $N>\frac{1}{4 \epsilon}$.

$$
\begin{aligned}
& \text { Now, if } n>N \Rightarrow \frac{1}{n}<\frac{1}{N}<4 \epsilon \\
& \Rightarrow \frac{1}{4 n}<\epsilon \\
& \Rightarrow\left|\frac{n+1}{2 n+1}-\frac{1}{2}\right|<\frac{1}{4 n}<\epsilon \\
& \text { Now, if } n>N \Rightarrow\left|\frac{n+1}{2 n+1}-\frac{1}{2}\right|<\epsilon . \\
& \text { Therefore } \lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}=\frac{1}{2} .
\end{aligned}
$$

(c) Let $\left\{x_{n}\right\}$ be a sequence of real numbers such that $\sin \left(\frac{1}{n}\right) \leq \frac{x_{n}}{n} \leq \frac{n+1}{n^{2}}$ for all $n \in \mathbb{N}$. Prove that $\lim _{n \rightarrow \infty} x_{n}=1$.

Solution:

$$
\begin{array}{rlrl}
\text { We have } \sin \left(\frac{1}{n}\right) & \leq \frac{x_{n}}{n} \leq \frac{n+1}{n^{2}} & & \text { Multiply all sides by } n \\
n \sin \left(\frac{1}{n}\right) & \leq x_{n} \leq \frac{n+1}{n} & & \text { Take the limits } \\
\lim _{n \rightarrow \infty} n & n \sin \left(\frac{1}{n}\right) & \leq \lim _{n \rightarrow \infty} x_{n} \leq \lim _{n \rightarrow \infty} \frac{n+1}{n} & \\
& \text { Now, } 1 & \leq \lim _{n \rightarrow \infty} x_{n} \leq 1 &
\end{array}
$$

3. Put ($\mathbf{T})$ if the statement is true and (\mathbf{F}) if the statement is false.
(a) Every sequence is bounded.
(a) \qquad

Solution:

F. The sequence $\left\{2^{n}\right\}_{n=1}^{\infty}$ is unbounded sequence.
(b) Let A be a finite subset of \mathbb{R}. Then $\inf A=\min A$.
(b) \qquad

Solution:

T. Note that $\min A \in A$. Since $\min A \leq a, \forall a \in A$, then $\min A$ is a lower bound of A. Let b be any lower bound of A. Since $\min A \in A$ and b is a lower bound of A, then $b \leq \min A$. Hence $\inf A=\min A$.
(c) Let A, B be bounded two nonempty subsets of \mathbb{R}. If $A \subseteq B$, then $\inf A \geq \inf B$.
(c)

Solution:

T. Since $A \subseteq B$, then $\inf B \leq a, \forall a \in A$, then $\inf B$ is a lower bound for A. Hence $\inf B \leq \inf A$.
(d) Let $A=\left\{x \in \mathbb{Q}: x^{2}<16\right\}$. Then $\sup A \in \mathbb{Z}$.
(d) \qquad

Solution:

T. Note that $0 \in A$. Since $x^{2}<16, \forall x \in A$, then $-4<x<4$. Hence 4 is an upper bound for A. Let α be an upper bound for A. Suppose that $\alpha<4$. Then by the density theorem for rational numbers there is $y \in \mathbb{Q}$ such that $\alpha<y<4$. Now we have $0 \leq \alpha<y<4$. Therefore $y^{2}<16$ and hence $y \in A$. But we have $\alpha<y$ and α is an upper bound for A. A contradiction. Thus $4 \leq \alpha$. Therefore $\sup A=4 \in \mathbb{Z}$.
(e) If $a \leq b$, then $\frac{1}{a} \leq \frac{1}{b}$.
\qquad

Solution:

F.
$-4<-2$ but $\frac{-1}{4}>\frac{-1}{2}$.
(f) Let $a \in \mathbb{R}$. If $|a|<1$, then the sequence $\left\{a^{n}\right\}_{n=1}^{\infty}$ is bounded.
(f)

Solution:

T. Since $|a|<1$, then $\lim _{n \rightarrow \infty} a^{n}=0$. Hence $\left\{a^{n}\right\}_{n=1}^{\infty}$ is convergent and hence is bounded.
(g) Let $\left\{a_{n}\right\},\left\{b_{n}\right\} \subset \mathbb{R}$ be two sequences of real numbers. If $a_{n}<b_{n} \forall n \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} a_{n}<\lim _{n \rightarrow \infty} b_{n}
$$

(g) \qquad

Solution:

F. Let $a_{n}=1-\frac{1}{n}, b_{n}=1+\frac{1}{n}$. Then $a_{n}=1-\frac{1}{n}<1+\frac{1}{n}=b_{n}$. But $\lim _{n \rightarrow \infty} a_{n}=1=\lim _{n \rightarrow \infty} b_{n}$.
(h) If $a>0$, there exist $n \in \mathbb{N}$ such that $\frac{1}{n}<a$.
(h) \qquad

Solution:

T. Since $\frac{1}{a}>0$, then by Archimedean Property there is $n \in \mathbb{N}$ such that $\frac{1}{a}<n$. Hence $\frac{1}{n}<a$.
(i) Let A be nonempty subset of \mathbb{R}, and $c \in \mathbb{R}$. If $c<0$, then $\sup (c A)=c \sup A$.
(i)
——

Solution:

F. For example, if $A=\{1,3,-1\}$ and $c=-2<0$, then $\sup A=3$, but $-2 A=$ $\{-2,-6,2\}$ and hence $\sup (-2 A)=2 \neq-6=-2 \sup A$.
(j) Let $A=\left\{\left.\frac{n-1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Then $\sup A=1$.
(j)

Solution:

T.Since $\frac{n-1}{n}=1-\frac{1}{n}<1, \forall n \in \mathbb{N}$. Then 1 is an upper bound for A. Let $\epsilon>0$ be given. There is $n_{0} \in \mathbb{N}$ such that $\frac{1}{n_{0}}<\epsilon$. Hence $-\epsilon<-\frac{1}{n_{0}}$. Thus $1-\epsilon<1-\frac{1}{n_{0}}=\frac{n_{0}-1}{n_{0}} \in A$. Thus $\sup A=1$.
4. (a) If $a>0$. Prove that then there is $n \in \mathbb{N}$ such that $\frac{1}{n}<a<n$

Solution:

Since $a \in \mathbb{R}$, then by Archimedean Property there is $n_{1} \in \mathbb{N}$ such that $a<n_{1}$. Also since $\frac{1}{a} \in \mathbb{R}$, then by Archimedean Property there is $n_{2} \in \mathbb{N}$ such that $\frac{1}{a}<n_{2}$. Hence $a>\frac{1}{n_{2}}$. Let $n=\max \left\{n_{1}, n_{2}\right\}$. Now, $a<n_{1}<n$. Also $\frac{1}{n}<\frac{1}{n_{2}}<a$. Then $\frac{1}{n}<a<n$.
(b) Let $x \in \mathbb{R}$. Prove that there exist $n \in \mathbb{Z}$ such that $n \leq x<n+1$.

Solution:

By Archimedean Property, there exist $m \in \mathbb{N}$ such that $|x|<m$. Hence $-m<$ $x<m$. The set $A_{x}=\{-m,-m+1, \ldots, 0,1, \ldots, m-1, m\}$ is a finite set. The set $B_{x}=\left\{k: k \in A_{x}\right.$ and $\left.k \leq x\right\} \subset A_{x}$ is bounded above by x. Let $n=\sup B_{x} \in B_{x}$. Then $n \leq x$ and $n+1 \notin B_{x}$. Hence $n \leq x<n+1$.
(c) Let $a, b \in \mathbb{R}$ such that $a<b$ and $b-a>1$. Prove that there is $m \in \mathbb{Z}$ such that $a<m<b$.

Solution:

Since $b-a>1$, then $a+1<b$. By part (b) there is $m \in \mathbb{Z}$ such that $m \leq a+1<$ $m+1$. Hence $a+1<m+1$ and $a<m$. Now, $m \leq a+1<b$. Thus $m<b$. Therefore $a<m<b$.
5. Let A, B be two nonempty bounded subsets of \mathbb{R}.
(a) Prove that $\inf (A+B)=\inf A+\inf B$.

Solution:

Since inf $A \leq a$ for all $a \in A$ and $\inf B \leq b$ for all $b \in B$, then $\inf A+\inf B \leq a+b$ for all $a \in A$ and $b \in B$. Hence $\inf A+\inf B$ is a lower bound for $A+B$. Let u be any lower bound of $A+B$. Hence $u \leq a+b$ for all $a \in A$ and $b \in B$. Thus for a fix $b \in B$, we have $u \leq a+b$ for all $a \in A$. Hence $u-b \leq a$ for all $a \in A$. Therefore $u-b$ is a lower bound for A. Hence $u-b \leq \inf A$ and thus $u-\inf A \leq b$ for all $b \in B$. Thus $u-\inf A$ is a lower bound for B. Hence $u-\inf A \leq \inf B$. Thus $u \leq \inf A+\inf B$. Therefore $\inf (A+B)=\inf A+\inf B$.
(b) Prove that $\inf (-B)=-\sup B$.

Solution:

Let $-B=\{-b: b \in B\}$. Since B is bounded below there is $m \in \mathbb{R}$ such that $m \leq b$ for all $b \in B$. Hence $-b \leq-m$ for all $b \in B$. Thus the set $-B$ is bounded above. Then by Completeness axiom $\sup (-B)$ exist and is a real number. Let $\alpha=\sup (-B)$ Now, $-b \leq \alpha$ for all $b \in B$. Hence $-\alpha \leq b$ for all $b \in B$. Thus $-\alpha$ is a lower bound for B. Let β be a lower bound for B. hence $\beta \leq b$ for all $b \in B$. Thus $-b \leq-\beta$ for all $b \in B$. Thus $-\beta$ is an upper bound for $-B$, but $\alpha=\sup (-B)$ and hence $\alpha \leq-\beta$ and therefore $\beta \leq-\alpha$. Thus inf $B=-\alpha \in \mathbb{R}$. Hence inf $B=-\sup (-B)$.
(c) Prove that $\inf (A-B)=\inf A-\sup B$.

Solution:

Note that $A-B=A+(-B)$. By part (a) and (b), we have
$\inf (A-B)=\inf (A+(-B))=\inf A+\inf (-B)=\inf A+(-\sup B)=\inf A-\sup B$.
6. Let $A=\left\{x \in \mathbb{Q} \mid x^{2}<7\right\}$.
(a) Prove that $\sup A=\sqrt{7}$.

Solution:

Note that $0 \in A$. Since $x^{2}<7 \Leftrightarrow-\sqrt{7}<x<\sqrt{7}$ hence $\sqrt{7}$ is an upper bound for A. Now, if u is an upper bound for A. Since $0 \in A$, then $0 \leq u$. Suppose that $0 \leq u<\sqrt{7}$ then by density of \mathbb{Q} there is $x \in \mathbb{Q}$ such that $0 \leq u<x<\sqrt{7}$. Now, since $0 \leq x<\sqrt{7} \Leftrightarrow x^{2}<7$, hence $x \in A$. But $u<x$ and u is an upper bound for A. Contradiction. Hence $\sqrt{7} \leq u$ and therefore $\sup A=\sqrt{7}$.
(b) Prove that $\inf A=-\sqrt{7}$.

Solution:

Note that $0 \in A$. Since $x^{2}<7 \Leftrightarrow-\sqrt{7}<x<\sqrt{7}$ hence $-\sqrt{7}$ is a lower bound for A. Now, if v is a lower bound for A. Since $0 \in A$, then $v \leq 0$. Suppose that $-\sqrt{7}<v \leq 0$ then by density of \mathbb{Q} there is $y \in \mathbb{Q}$ such that $-\sqrt{7}<y<v \leq 0$. Now, since $-\sqrt{7}<y \leq 0 \Leftrightarrow y^{2}<7$, hence $y \in A$. But $y<v$ and v is a lower bound for A. Contradiction. Hence $v \leq-\sqrt{7}$ and therefore inf $A=-\sqrt{7}$.
(c) Prove that there exist a sequence $\left\{x_{n}\right\} \subset A$ such that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{7}$.

Solution:

For each $n \in \mathbb{N}$, since $\sqrt{7}-\frac{1}{n}$ is not an upper bound of A, then there is $x_{n} \in A$ such that

$$
\sqrt{7}-\frac{1}{n}<x_{n} \leq \sqrt{7}<\sqrt{7}+\frac{1}{n}
$$

Thus

$$
\sqrt{7}-\frac{1}{n}<x_{n}<\sqrt{7}+\frac{1}{n}, \forall n \in \mathbb{N} .
$$

Using Squeeze Theorem we have

$$
\sqrt{7}=\lim _{n \rightarrow \infty}\left[\sqrt{7}-\frac{1}{n}\right] \leq \lim _{n \rightarrow \infty} x_{n} \leq \lim _{n \rightarrow \infty}\left[\sqrt{7}+\frac{1}{n}\right]=\sqrt{7}
$$

Thus $\lim _{n \rightarrow \infty} x_{n}=\sqrt{7}$.
7. (a) Prove that $\| a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{R}$.

Solution:

Since $a=a-b+b$, then $|a|=|a-b+b| \leq|a-b|+|b|$, and hence $|a|-|b| \leq|a-b|$. Also, since $b=b-a+a$, then $|b|=|b-a+a| \leq|b-a|+|a|$, and hence $|b|-|a| \leq|b-a|=|a-b|$. Now, $|b|-|a| \leq|a-b| \Leftrightarrow-|a-b| \leq-|b|+|a|$ and hence $-|a-b| \leq|a|-|b|$. Also we have $|a|-|b| \leq|a-b|$. Thus $-|a-b| \leq|a|-|b| \leq$ $|a|-|b| \leq|a-b|$. Therefore $||a|-|b|| \leq|a-b|$.
(b) Let $\left\{x_{n}\right\}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}$. Prove that $\lim _{n \rightarrow \infty}\left|x_{n}\right|=|x|$.

Solution:

We have that $||a|-|b|| \leq|a-b|, \forall a, b \in \mathbb{R}$. Let $\epsilon>0$ be given. Since $\lim _{n \rightarrow \infty} x_{n}=x$, therefore there exists $N \in \mathbb{N} \ni$ if $n>N \Rightarrow\left|x_{n}-x\right|<\epsilon$. Now, if $n>N \Rightarrow$ $\left|\left|x_{n}\right|-|x|\right| \leq\left|x_{n}-x\right|<\epsilon$. Thus $\lim _{n \rightarrow \infty}\left|x_{n}\right|=|x|$.
(c) Let $\left\{a_{n}\right\}$ be a sequence such that $\left|a_{n}-5\right| \leq \frac{1}{n^{2}}$ for all $n \in \mathbb{N}$. Prove that $\lim _{n \rightarrow \infty} a_{n}=5$.

Solution:

Let $\epsilon>0$ be given. Since $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$, therefore there exists $N \in \mathbb{N} \ni$ if $n>$ $N \Rightarrow \frac{1}{n^{2}}=\left|\frac{1}{n^{2}}\right|<\epsilon$. Now, if $n>N \Rightarrow\left|a_{n}-5\right| \leq \frac{1}{n^{2}}=\left|\frac{1}{n^{2}}\right|<\epsilon$. Thus $\lim _{n \rightarrow \infty} a_{n}=5$.

