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1. Let α, β, x ∈ R, {xn} be a sequence of real numbers, and let A ⊆ R be bounded set.
State the definition of the following:

(a) [5]α is the supremum of A.

Solution:

α is the supremum of A if it satisfies the conditions:

(1) α is an upper bound of A (i.e. a ≤ α for all a ∈ A.), and

(2) If v is any upper bound of A then α ≤ v.

(b) [5]β is the infimum of A.

Solution:

β is the infimum of A if it satisfies the conditions:

(1) β is a lower bound of A (i.e. β ≤ a for all a ∈ A.), and

(2) If t is any lower bound of A, then t ≤ β.

(c) [5]The completeness axiom of R.

Solution:

Every nonempty subset of R that has an upper bound also has a supremum in R.

(d) [5]The Density of Q.

Solution:

If a, b ∈ R with a < b, then there exist a rational number r ∈ Q such that
a < r < b.

(e) [5]The sequence {xn} converges to x.

Solution:

The sequence {xn} converges to x ∈ R if for every ε > 0 there exists a natural
number N = N(ε) ∈ N such that if n > N ⇒ |xn − x| < ε, and we write
lim
n→∞

xn = x.
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2. (a) [3]Let {xn} be a sequence and x, y ∈ R. If lim
n→∞

xn = x, and lim
n→∞

xn = y. Prove that
y = x

Solution:

Let ε > 0 be given. Since lim
n→∞

xn = x, then there exist N1 ∈ N such that if

n > N1 ⇒ |xn−x| < ε

2
. Since lim

n→∞
xn = y, then there exist N2 ∈ N � if n > N2 ⇒

|xn−x| < ε

2
. Now, Let N = max{N1, N2}. If n > N, then n > N1,⇒ |xn−x| < ε

2
and if n > N, then n > N2,⇒ |xn−y| < ε

2
. Then |x−y| = |x−xN+1+xN+1−y| ≤

|x − xN+1| + |xN+1 − y| ≤ ε

2
+

ε

2
= ε. Hence 0 ≤ |x − y| ≤ ε. Thus |x − y| = 0.

Therefore x = y.

(b) [5]Let xn =
n + 1

2n+ 1
. Use the definition of the limit of a sequence to prove that

lim
n→∞

n + 1

2n+ 1
=

1

2
.

Solution:

Discussion:
We start with ε > 0 and want to find N = N(ε) ∈ N such that if n > n ⇒∣∣∣∣ n+ 1

2n + 1
− 1

2

∣∣∣∣ < ε.

∣∣∣∣ n+ 1

2n + 1
− 1

2

∣∣∣∣ =
∣∣∣∣2(n+ 1)− (2n+ 1)

2(2n+ 1)

∣∣∣∣
=

∣∣∣∣2n + 2− 2n− 1

4n+ 2

∣∣∣∣
=

∣∣∣∣ 1

4n + 2

∣∣∣∣
≤ 1

4n+ 1

=
1

4n
Note that: 4n+ 1 ≥ 4n

≤ 1

4n
Note that: 4n+ 1 ≥ 4n ⇔ 1

4n+ 1
≤ 1

4n

=
1

4n
.

Now, let
1

4n
< ε ⇔n >

1

4ε
.

Now, since
1

4ε
may not by an natural number, we let N = N(ε) >

1

4ε
.

Proof:

Let ε > 0 be given. Let N ∈ N such that N >
1

4ε
.
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Now, if n > N ⇒ 1

n
<

1

N
< 4ε

⇒ 1

4n
< ε

⇒
∣∣∣∣ n+ 1

2n+ 1
− 1

2

∣∣∣∣ < 1

4n
< ε

Now, if n > N ⇒
∣∣∣∣ n+ 1

2n+ 1
− 1

2

∣∣∣∣ < ε.

Therefore lim
n→∞

n+ 1

2n+ 1
=

1

2
.

(c) [3]Let {xn} be a sequence of real numbers such that sin

(
1

n

)
≤ xn

n
≤ n + 1

n2
for all

n ∈ N. Prove that lim
n→∞

xn = 1.

Solution:

We have sin

(
1

n

)
≤ xn

n
≤ n+ 1

n2
Multiply all sides by n

n sin

(
1

n

)
≤ xn ≤ n+ 1

n
Take the limits

lim
n→∞

n sin

(
1

n

)
≤ lim

n→∞
xn ≤ lim

n→∞
n+ 1

n

Now, 1 ≤ lim
n→∞

xn ≤ 1 Using Squeeze Theorem.

Therefore lim
n→∞

xn = 1.
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3. Put (T) if the statement is true and (F) if the statement is false.

(a) [3]Every sequence is bounded.

(a)

Solution:

F. The sequence {2n}∞n=1 is unbounded sequence.

(b) [3]Let A be a finite subset of R. Then inf A = minA.

(b)

Solution:

T.Note that minA ∈ A. Since minA ≤ a,∀a ∈ A, then minA is a lower bound of A.
Let b be any lower bound of A. Since minA ∈ A and b is a lower bound of A, then
b ≤ minA. Hence inf A = minA.

(c) [3]Let A,B be bounded two nonempty subsets of R. If A ⊆ B, then inf A ≥ inf B.

(c)

Solution:

T. Since A ⊆ B, then inf B ≤ a,∀a ∈ A, then inf B is a lower bound for A. Hence
inf B ≤ inf A.

(d) [3]Let A = {x ∈ Q : x2 < 16}. Then supA ∈ Z.

(d)

Solution:

T. Note that 0 ∈ A. Since x2 < 16,∀x ∈ A, then −4 < x < 4. Hence 4 is an upper bound
for A. Let α be an upper bound for A. Suppose that α < 4. Then by the density theorem
for rational numbers there is y ∈ Q such that α < y < 4. Now we have 0 ≤ α < y < 4.
Therefore y2 < 16 and hence y ∈ A. But we have α < y and α is an upper bound for A.
A contradiction. Thus 4 ≤ α. Therefore supA = 4 ∈ Z.

(e) [3]If a ≤ b, then
1

a
≤ 1

b
.

(e)

Solution:

F.

−4 < −2 but
−1

4
>

−1

2
.

(f) [3]Let a ∈ R. If |a| < 1, then the sequence {an}∞n=1 is bounded.

(f)
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Solution:

T. Since |a| < 1, then lim
n→∞ an = 0. Hence {an}∞n=1 is convergent and hence is bounded.

(g) [3]Let {an}, {bn} ⊂ R be two sequences of real numbers. If an < bn∀n ∈ N, then

lim
n→∞ an < lim

n→∞ bn.

(g)

Solution:

F. Let an = 1− 1

n
, bn = 1+

1

n
. Then an = 1− 1

n
< 1+

1

n
= bn. But lim

n→∞ an = 1 = lim
n→∞ bn.

(h) [3]If a > 0, there exist n ∈ N such that
1

n
< a.

(h)

Solution:

T. Since
1

a
> 0, then by Archimedean Property there is n ∈ N such that

1

a
< n. Hence

1

n
< a.

(i) [3]Let A be nonempty subset of R, and c ∈ R. If c < 0, then sup(cA) = c supA.

(i)

Solution:

F. For example, if A = {1, 3,−1} and c = −2 < 0, then supA = 3, but −2A =
{−2,−6, 2} and hence sup(−2A) = 2 �= −6 = −2 supA.

(j) [3]Let A =

{
n− 1

n
| n ∈ N

}
. Then supA = 1.

(j)

Solution:

T.Since
n− 1

n
= 1− 1

n
< 1,∀n ∈ N. Then 1 is an upper bound for A. Let ε > 0 be given.

There is n0 ∈ N such that
1

n0
< ε. Hence −ε < − 1

n0
. Thus 1− ε < 1− 1

n0
=

n0 − 1

n0
∈ A.

Thus supA = 1.
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4. (a) [3]If a > 0. Prove that then there is n ∈ N such that
1

n
< a < n

Solution:

Since a ∈ R, then by Archimedean Property there is n1 ∈ N such that a < n1. Also

since
1

a
∈ R, then by Archimedean Property there is n2 ∈ N such that

1

a
< n2.

Hence a >
1

n2
. Let n = max{n1, n2}. Now, a < n1 < n. Also

1

n
<

1

n2
< a. Then

1

n
< a < n.

(b) [3]Let x ∈ R. Prove that there exist n ∈ Z such that n ≤ x < n + 1.

Solution:

By Archimedean Property, there exist m ∈ N such that |x| < m. Hence −m <
x < m. The set Ax = {−m,−m+1, . . . , 0, 1, . . . , m− 1, m} is a finite set. The set
Bx = {k : k ∈ Ax and k ≤ x} ⊂ Ax is bounded above by x. Let n = supBx ∈ Bx.
Then n ≤ x and n+ 1 /∈ Bx. Hence n ≤ x < n+ 1.

(c) [5]Let a, b ∈ R such that a < b and b − a > 1. Prove that there is m ∈ Z such that
a < m < b.

Solution:

Since b− a > 1, then a+1 < b. By part (b) there is m ∈ Z such that m ≤ a+1 <
m + 1. Hence a + 1 < m + 1 and a < m. Now, m ≤ a + 1 < b. Thus m < b.
Therefore a < m < b.
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5. Let A,B be two nonempty bounded subsets of R.

(a) [4]Prove that inf(A+B) = inf A+ inf B.

Solution:

Since inf A ≤ a for all a ∈ A and inf B ≤ b for all b ∈ B, then inf A+inf B ≤ a+ b
for all a ∈ A and b ∈ B. Hence inf A + inf B is a lower bound for A + B. Let u
be any lower bound of A + B. Hence u ≤ a + b for all a ∈ A and b ∈ B. Thus
for a fix b ∈ B, we have u ≤ a + b for all a ∈ A. Hence u − b ≤ a for all a ∈ A.
Therefore u− b is a lower bound for A. Hence u− b ≤ inf A and thus u− inf A ≤ b
for all b ∈ B. Thus u − inf A is a lower bound for B. Hence u − inf A ≤ inf B.
Thus u ≤ inf A + inf B. Therefore inf(A+B) = inf A+ inf B.

(b) [4]Prove that inf(−B) = − supB.

Solution:

Let −B = {−b : b ∈ B}. Since B is bounded below there is m ∈ R such that
m ≤ b for all b ∈ B. Hence −b ≤ −m for all b ∈ B. Thus the set −B is bounded
above. Then by Completeness axiom sup(−B) exist and is a real number. Let
α = sup(−B) Now, −b ≤ α for all b ∈ B. Hence −α ≤ b for all b ∈ B. Thus
−α is a lower bound for B. Let β be a lower bound for B. hence β ≤ b for all
b ∈ B. Thus −b ≤ −β for all b ∈ B. Thus −β is an upper bound for −B, but
α = sup(−B) and hence α ≤ −β and therefore β ≤ −α. Thus inf B = −α ∈ R.
Hence inf B = − sup(−B).

(c) [3]Prove that inf(A− B) = inf A− supB.

Solution:

Note that A−B = A+ (−B). By part (a) and (b), we have

inf(A−B) = inf(A+(−B)) = inf A+inf(−B) = inf A+(− supB) = inf A−supB.

c©Dr. H Alsulami
Page 7 of 9



Exam One
Department of Mathematics

Math311
December 1 , 2016

6. Let A =
{
x ∈ Q | x2 < 7

}
.

(a) [4]Prove that supA =
√
7.

Solution:

Note that 0 ∈ A. Since x2 < 7 ⇔ −
√
7 < x <

√
7 hence

√
7 is an upper bound

for A. Now, if u is an upper bound for A. Since 0 ∈ A, then 0 ≤ u. Suppose that
0 ≤ u <

√
7 then by density of Q there is x ∈ Q such that 0 ≤ u < x <

√
7. Now,

since 0 ≤ x <
√
7 ⇔ x2 < 7, hence x ∈ A. But u < x and u is an upper bound for

A. Contradiction. Hence
√
7 ≤ u and therefore supA =

√
7.

(b) [4]Prove that inf A = −
√
7.

Solution:

Note that 0 ∈ A. Since x2 < 7 ⇔ −
√
7 < x <

√
7 hence −

√
7 is a lower bound

for A. Now, if v is a lower bound for A. Since 0 ∈ A, then v ≤ 0. Suppose that
−
√
7 < v ≤ 0 then by density of Q there is y ∈ Q such that −

√
7 < y < v ≤ 0.

Now, since −
√
7 < y ≤ 0 ⇔ y2 < 7, hence y ∈ A. But y < v and v is a lower

bound for A. Contradiction. Hence v ≤ −
√
7 and therefore inf A = −

√
7.

(c) [3]Prove that there exist a sequence {xn} ⊂ A such that lim
n→∞

xn =
√
7.

Solution:

For each n ∈ N, since
√
7 − 1

n
is not an upper bound of A, then there is xn ∈ A

such that √
7− 1

n
< xn ≤

√
7 <

√
7 +

1

n
.

Thus √
7− 1

n
< xn <

√
7 +

1

n
, ∀n ∈ N.

Using Squeeze Theorem we have

√
7 = lim

n→∞
[
√
7− 1

n
] ≤ lim

n→∞
xn ≤ lim

n→∞
[
√
7 +

1

n
] =

√
7.

Thus lim
n→∞

xn =
√
7.
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7. (a) [4]Prove that ||a| − |b|| ≤ |a− b| for all a, b ∈ R.

Solution:

Since a = a−b+b, then |a| = |a−b+b| ≤ |a−b|+ |b|, and hence |a|−|b| ≤ |a−b|.
Also, since b = b − a + a, then |b| = |b − a + a| ≤ |b − a| + |a|, and hence
|b| − |a| ≤ |b − a| = |a − b|. Now, |b| − |a| ≤ |a − b| ⇔ −|a − b| ≤ −|b| + |a| and
hence −|a−b| ≤ |a|−|b|. Also we have |a|−|b| ≤ |a−b|. Thus −|a−b| ≤ |a|−|b| ≤
|a| − |b| ≤ |a− b|. Therefore ||a| − |b|| ≤ |a− b|.

(b) [4]Let {xn} be a sequence of real numbers such that lim
n→∞

xn = x ∈ R. Prove that

lim
n→∞

|xn| = |x|.
Solution:

We have that ||a|− |b|| ≤ |a− b|, ∀a, b ∈ R. Let ε > 0 be given. Since lim
n→∞

xn = x,

therefore there exists N ∈ N � if n > N ⇒ |xn − x| < ε. Now,if n > N ⇒
||xn| − |x|| ≤ |xn − x| < ε. Thus lim

n→∞
|xn| = |x|.

(c) [3]Let {an} be a sequence such that |an−5| ≤ 1

n2
for all n ∈ N. Prove that lim

n→∞
an = 5.

Solution:

Let ε > 0 be given. Since lim
n→∞

1

n2
= 0, therefore there exists N ∈ N � if n >

N ⇒ 1

n2
=

∣∣∣∣ 1n2

∣∣∣∣ < ε. Now,if n > N ⇒ |an−5| ≤ 1

n2
=

∣∣∣∣ 1n2

∣∣∣∣ < ε. Thus lim
n→∞

an = 5.
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