

- الرجاء كتابة اسمُك و رقمك الجامعي في المكان المخصص أسفل هذه الصفحة.
 - تأكد من حصولك على جميع الأسئلة.
 - الرجاء أغلق الجوال و عدم أستخدامه خلال الاختبار.
- يحتوي هذا الإختبار على لللبلي أسلمة والمطلوب الأجابة على لللسلمة منها، علماً بأن السؤالين الأول و الثالث أجباريان.
 - الزمن المحدد لهذا الإختبار 120 دقيقة.
 - بالتوفيق إن شاء الله.

Question:	1	2	3	4	5	6	7	Total
Points:	25	11	30	11	11	11	11	110
Score:								

Name : _____

Student's I.N.:

1. Let $\alpha, \beta, x \in \mathbb{R}, \{x_n\}$ be a sequence of real numbers, and let $A \subseteq \mathbb{R}$ be bounded set. State the definition of the following:

(a`	α	is	the	supremum	of	Α.
1	a	, a	10		Supremum	01	11.

Solution:	
α is the supremum of A if it satisfies the conditions:	
(1) α is an upper bound of A (i.e. $a \leq \alpha$ for all $a \in A$.), and	
(2) If v is any upper bound of A then $\alpha \leq v$.	
β is the infimum of A.	[5]
Solution:	
β is the infimum of A if it satisfies the conditions:	
(1) β is a lower bound of A (i.e. $\beta \leq a$ for all $a \in A$.), and	
(2) If t is any lower bound of A, then $t \leq \beta$.	
The completeness axiom of \mathbb{R} .	[5]

(c) The completeness axiom of \mathbb{R} .

Solution:

(b)

Every nonempty subset of \mathbb{R} that has an upper bound also has a supremum in \mathbb{R} .

(d) The Density of \mathbb{Q} .

Solution:

If $a, b \in \mathbb{R}$ with a < b, then there exist a rational number $r \in \mathbb{Q}$ such that a < r < b.

(e) The sequence $\{x_n\}$ converges to x.

Solution:

The sequence $\{x_n\}$ converges to $x \in \mathbb{R}$ if for every $\epsilon > 0$ there exists a natural number $N = N(\epsilon) \in \mathbb{N}$ such that if $n > N \Rightarrow |x_n - x| < \epsilon$, and we write $\lim_{n \to \infty} x_n = x.$

 $\left[5\right]$

 $\left[5\right]$

 $\left[5\right]$

Math311 December 1 , 2016

2. (a) Let $\{x_n\}$ be a sequence and $x, y \in \mathbb{R}$. If $\lim_{n \to \infty} x_n = x$, and $\lim_{n \to \infty} x_n = y$. Prove that y = x

Solution:

Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} x_n = x$, then there exist $N_1 \in \mathbb{N}$ such that if $n > N_1 \Rightarrow |x_n - x| < \frac{\epsilon}{2}$. Since $\lim_{n \to \infty} x_n = y$, then there exist $N_2 \in \mathbb{N} \ni \text{if } n > N_2 \Rightarrow |x_n - x| < \frac{\epsilon}{2}$. Now, Let $N = \max\{N_1, N_2\}$. If n > N, then $n > N_1, \Rightarrow |x_n - x| < \frac{\epsilon}{2}$ and if n > N, then $n > N_2, \Rightarrow |x_n - y| < \frac{\epsilon}{2}$. Then $|x - y| = |x - x_{N+1} + x_{N+1} - y| \le |x - x_{N+1}| + |x_{N+1} - y| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Hence $0 \le |x - y| \le \epsilon$. Thus |x - y| = 0. Therefore x = y.

(b) Let $x_n = \frac{n+1}{2n+1}$. Use the *definition* of the limit of a sequence to prove that $\lim_{n \to \infty} \frac{n+1}{2n+1} = \frac{1}{2}$.

[3]

Solution:

Discussion:

We start with $\epsilon > 0$ and want to find $N = N(\epsilon) \in \mathbb{N}$ such that if $n > n \Rightarrow \left|\frac{n+1}{2n+1} - \frac{1}{2}\right| < \epsilon$.

$$\begin{split} \left|\frac{n+1}{2n+1} - \frac{1}{2}\right| &= \left|\frac{2(n+1) - (2n+1)}{2(2n+1)}\right| \\ &= \left|\frac{2n+2-2n-1}{4n+2}\right| \\ &= \left|\frac{1}{4n+2}\right| \\ &\leq \frac{1}{4n+1} \\ &= \frac{1}{4n} \\ &\leq \frac{1}{4n} \\ &= \frac{1}{4n} \\ &\text{Note that: } 4n+1 \ge 4n \Leftrightarrow \frac{1}{4n+1} \le \frac{1}{4n} \\ &= \frac{1}{4n} \\ &\text{Note that: } 4n+1 \ge 4n \Leftrightarrow \frac{1}{4n+1} \le \frac{1}{4n} \\ &= \frac{1}{4n} \\ &\text{Now, let } \frac{1}{4n} < \epsilon \\ &\Leftrightarrow n > \frac{1}{4\epsilon} . \end{split}$$
Now, since $\frac{1}{4\epsilon}$ may not by an natural number, we let $N = N(\epsilon) > \frac{1}{4\epsilon} .$
Proof:
Let $\epsilon > 0$ be given. Let $N \in \mathbb{N}$ such that $N > \frac{1}{4\epsilon} .$

 ϵ

Now, if
$$n > N \Rightarrow \frac{1}{n} < \frac{1}{N} < 4\epsilon$$

 $\Rightarrow \frac{1}{4n} < \epsilon$
 $\Rightarrow \left| \frac{n+1}{2n+1} - \frac{1}{2} \right| < \frac{1}{4n} < \frac{1}{2n+1}$
Now, if $n > N \Rightarrow \left| \frac{n+1}{2n+1} - \frac{1}{2} \right| < \epsilon$.
Therefore $\lim_{n \to \infty} \frac{n+1}{2n+1} = \frac{1}{2}$.

(c) Let $\{x_n\}$ be a sequence of real numbers such that $\sin\left(\frac{1}{n}\right) \leq \frac{x_n}{n} \leq \frac{n+1}{n^2}$ for all $n \in \mathbb{N}$. Prove that $\lim_{n \to \infty} x_n = 1$.

Solution:

We have
$$\sin\left(\frac{1}{n}\right) \leq \frac{x_n}{n} \leq \frac{n+1}{n^2}$$
 Multiply all sides by n
 $n \sin\left(\frac{1}{n}\right) \leq x_n \leq \frac{n+1}{n}$ Take the limits
 $\lim_{n \to \infty} n \sin\left(\frac{1}{n}\right) \leq \lim_{n \to \infty} x_n \leq \lim_{n \to \infty} \frac{n+1}{n}$
Now, $1 \leq \lim_{n \to \infty} x_n \leq 1$ Using Squeeze Theorem.
Therefore $\lim_{n \to \infty} x_n = 1$.

[3]

Exam (Depart	One Math311 ment of Mathematics December 1, 2016	
3. Put (a)	(\mathbf{T}) if the statement is true and (\mathbf{F}) if the statement is false. Every sequence is <i>bounded</i> .	[3]
	(a)	
	Solution: F . The sequence $\{2^n\}_{n=1}^{\infty}$ is unbounded sequence.	
(b)	Let A be a finite subset of \mathbb{R} . Then $\inf A = \min A$. (b)	[3]
	Solution:	
	T .Note that $\min A \in A$. Since $\min A \leq a, \forall a \in A$, then $\min A$ is a lower bound of A . Let b be any lower bound of A . Since $\min A \in A$ and b is a lower bound of A , then $b \leq \min A$. Hence $\inf A = \min A$.	
(c)	Let A, B be bounded two nonempty subsets of \mathbb{R} . If $A \subseteq B$, then $\inf A \ge \inf B$. (c)	[3]
	Solution: T. Since $A \subseteq B$, then $\inf B \leq a, \forall a \in A$, then $\inf B$ is a lower bound for A. Hence $\inf B \leq \inf A$.	
(d)	Let $A = \{x \in \mathbb{Q} : x^2 < 16\}$. Then $\sup A \in \mathbb{Z}$. (d)	[3]
	Solution: T . Note that $0 \in A$. Since $x^2 < 16$, $\forall x \in A$, then $-4 < x < 4$. Hence 4 is an upper bound for A. Let α be an upper bound for A. Suppose that $\alpha < 4$. Then by the density theorem for rational numbers there is $y \in \mathbb{Q}$ such that $\alpha < y < 4$. Now we have $0 \le \alpha < y < 4$. Therefore $y^2 < 16$ and hence $y \in A$. But we have $\alpha < y$ and α is an upper bound for A. A contradiction. Thus $4 \le \alpha$. Therefore $\sup A = 4 \in \mathbb{Z}$.	
(e)	If $a \le b$, then $\frac{1}{a} \le \frac{1}{b}$.	[3]
	(e)	
	F. $-4 < -2$ but $\frac{-1}{4} > \frac{-1}{2}$.	
(f)	Let $a \in \mathbb{R}$. If $ a < 1$, then the sequence $\{a^n\}_{n=1}^{\infty}$ is bounded.	[3]
	(f)	

(g) _____

[3]

[3]

[3]

[3]

Solution:

T. Since |a| < 1, then $\lim_{n \to \infty} a^n = 0$. Hence $\{a^n\}_{n=1}^{\infty}$ is convergent and hence is bounded.

(g) Let $\{a_n\}, \{b_n\} \subset \mathbb{R}$ be two sequences of real numbers. If $a_n < b_n \forall n \in \mathbb{N}$, then

$$\lim_{n \to \infty} a_n < \lim_{n \to \infty} b_n.$$

Solution:
F. Let
$$a_n = 1 - \frac{1}{n}$$
, $b_n = 1 + \frac{1}{n}$. Then $a_n = 1 - \frac{1}{n} < 1 + \frac{1}{n} = b_n$. But $\lim_{n \to \infty} a_n = 1 = \lim_{n \to \infty} b_n$.
(h) If $a > 0$, there exist $n \in \mathbb{N}$ such that $\frac{1}{n} < a$.

Solution:
T. Since
$$\frac{1}{a} > 0$$
, then by Archimedean Property there is $n \in \mathbb{N}$ such that $\frac{1}{a} < n$. Hence $\frac{1}{n} < a$.

(i) Let A be nonempty subset of \mathbb{R} , and $c \in \mathbb{R}$. If c < 0, then $\sup(cA) = c \sup A$.

(j) _____

(h) _____

Solution: **F**. For example, if $A = \{1, 3, -1\}$ and c = -2 < 0, then $\sup A = 3$, but $-2A = \{-2, -6, 2\}$ and hence $\sup(-2A) = 2 \neq -6 = -2 \sup A$.

(j) Let $A = \left\{ \frac{n-1}{n} \mid n \in \mathbb{N} \right\}$. Then $\sup A = 1$.

Solution: **T**.Since $\frac{n-1}{n} = 1 - \frac{1}{n} < 1, \forall n \in \mathbb{N}$. Then 1 is an upper bound for A. Let $\epsilon > 0$ be given. There is $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \epsilon$. Hence $-\epsilon < -\frac{1}{n_0}$. Thus $1 - \epsilon < 1 - \frac{1}{n_0} = \frac{n_0 - 1}{n_0} \in A$. Thus $\sup A = 1$.

4. (a) If a > 0. Prove that then there is $n \in \mathbb{N}$ such that $\frac{1}{n} < a < n$

Solution: Since $a \in \mathbb{R}$, then by Archimedean Property there is $n_1 \in \mathbb{N}$ such that $a < n_1$. Also since $\frac{1}{a} \in \mathbb{R}$, then by Archimedean Property there is $n_2 \in \mathbb{N}$ such that $\frac{1}{a} < n_2$. Hence $a > \frac{1}{n_2}$. Let $n = \max\{n_1, n_2\}$. Now, $a < n_1 < n$. Also $\frac{1}{n} < \frac{1}{n_2} < a$. Then $\frac{1}{n} < a < n$.

(b) Let $x \in \mathbb{R}$. Prove that there exist $n \in \mathbb{Z}$ such that $n \leq x < n + 1$.

Solution:

By Archimedean Property, there exist $m \in \mathbb{N}$ such that |x| < m. Hence -m < x < m. The set $A_x = \{-m, -m+1, \dots, 0, 1, \dots, m-1, m\}$ is a finite set. The set $B_x = \{k : k \in A_x \text{ and } k \le x\} \subset A_x$ is bounded above by x. Let $n = \sup B_x \in B_x$. Then $n \le x$ and $n + 1 \notin B_x$. Hence $n \le x < n + 1$.

(c) Let $a, b \in \mathbb{R}$ such that a < b and b - a > 1. Prove that there is $m \in \mathbb{Z}$ such that a < m < b.

Solution:

Since b-a > 1, then a+1 < b. By part (b) there is $m \in \mathbb{Z}$ such that $m \le a+1 < m+1$. Hence a+1 < m+1 and a < m. Now, $m \le a+1 < b$. Thus m < b. Therefore a < m < b.

[5]

[3]

[3]

- 5. Let A, B be two nonempty bounded subsets of \mathbb{R} .
 - (a) Prove that $\inf(A + B) = \inf A + \inf B$.

Solution:

Since $\inf A \leq a$ for all $a \in A$ and $\inf B \leq b$ for all $b \in B$, then $\inf A + \inf B \leq a + b$ for all $a \in A$ and $b \in B$. Hence $\inf A + \inf B$ is a lower bound for A + B. Let u be any lower bound of A + B. Hence $u \leq a + b$ for all $a \in A$ and $b \in B$. Thus for a fix $b \in B$, we have $u \leq a + b$ for all $a \in A$. Hence $u - b \leq a$ for all $a \in A$. Therefore u - b is a lower bound for A. Hence $u - b \leq i$ for all $a \in A$. Therefore u - b is a lower bound for A. Hence $u - b \leq i$ for all $a \in A$. Therefore u - b is a lower bound for A. Hence $u - b \leq i$ for all $a \leq b$ for all $b \in B$. Thus $u - \inf A$ is a lower bound for B. Hence $u - \inf A \leq i$ for all $b \in B$. Thus $u - \inf A$ is a lower bound for B. Hence $u - \inf A \leq i$ for all $b \in B$. Therefore $\inf (A + B) = \inf A + \inf B$.

(b) Prove that $\inf(-B) = -\sup B$.

Solution:

Let $-B = \{-b : b \in B\}$. Since *B* is bounded below there is $m \in \mathbb{R}$ such that $m \leq b$ for all $b \in B$. Hence $-b \leq -m$ for all $b \in B$. Thus the set -B is bounded above. Then by Completeness axiom $\sup(-B)$ exist and is a real number. Let $\alpha = \sup(-B)$ Now, $-b \leq \alpha$ for all $b \in B$. Hence $-\alpha \leq b$ for all $b \in B$. Thus $-\alpha$ is a lower bound for *B*. Let β be a lower bound for *B*. hence $\beta \leq b$ for all $b \in B$. Thus $-\beta$ is an upper bound for -B, but $\alpha = \sup(-B)$ and hence $\alpha \leq -\beta$ and therefore $\beta \leq -\alpha$. Thus $\inf B = -\alpha \in \mathbb{R}$. Hence $\inf B = -\sup(-B)$.

(c) Prove that $\inf(A - B) = \inf A - \sup B$.

Solution:

Note that A - B = A + (-B). By part (a) and (b), we have

 $\inf(A-B) = \inf(A+(-B)) = \inf A + \inf(-B) = \inf A + (-\sup B) = \inf A - \sup B.$

[4]

[3]

- 6. Let $A = \{x \in \mathbb{Q} \mid x^2 < 7\}$.
 - (a) Prove that $\sup A = \sqrt{7}$.

Solution:

Note that $0 \in A$. Since $x^2 < 7 \Leftrightarrow -\sqrt{7} < x < \sqrt{7}$ hence $\sqrt{7}$ is an upper bound for A. Now, if u is an upper bound for A. Since $0 \in A$, then $0 \le u$. Suppose that $0 \le u < \sqrt{7}$ then by density of \mathbb{Q} there is $x \in \mathbb{Q}$ such that $0 \le u < x < \sqrt{7}$. Now, since $0 \le x < \sqrt{7} \Leftrightarrow x^2 < 7$, hence $x \in A$. But u < x and u is an upper bound for A. Contradiction. Hence $\sqrt{7} \le u$ and therefore $\sup A = \sqrt{7}$.

(b) Prove that $\inf A = -\sqrt{7}$.

Solution:

Note that $0 \in A$. Since $x^2 < 7 \Leftrightarrow -\sqrt{7} < x < \sqrt{7}$ hence $-\sqrt{7}$ is a lower bound for A. Now, if v is a lower bound for A. Since $0 \in A$, then v < 0. Suppose that $-\sqrt{7} < v \leq 0$ then by density of \mathbb{Q} there is $y \in \mathbb{Q}$ such that $-\sqrt{7} < y < v \leq 0$. Now, since $-\sqrt{7} < y \leq 0 \Leftrightarrow y^2 < 7$, hence $y \in A$. But y < v and v is a lower bound for A. Contradiction. Hence $v \leq -\sqrt{7}$ and therefore $\inf A = -\sqrt{7}$.

(c) Prove that there exist a sequence $\{x_n\} \subset A$ such that $\lim x_n = \sqrt{7}$.

Solution:

For each $n \in \mathbb{N}$, since $\sqrt{7} - \frac{1}{n}$ is not an upper bound of A, then there is $x_n \in A$ such that $\frac{1}{n}$.

$$\sqrt{7} - \frac{1}{n} < x_n \le \sqrt{7} < \sqrt{7} - \frac{1}{n} < x_n \le \sqrt{7} < \sqrt{7} - \frac{1}{n} < \frac{1}{n}$$

Thus

$$\sqrt{7} - \frac{1}{n} < x_n < \sqrt{7} + \frac{1}{n}, \forall n \in \mathbb{N}$$

Using Squeeze Theorem we have

$$\sqrt{7} = \lim_{n \to \infty} \left[\sqrt{7} - \frac{1}{n}\right] \le \lim_{n \to \infty} x_n \le \lim_{n \to \infty} \left[\sqrt{7} + \frac{1}{n}\right] = \sqrt{7}.$$

Thus $\lim x_n = \sqrt{7}$.

[4]

[4]

7. (a) Prove that $||a| - |b|| \le |a - b|$ for all $a, b \in \mathbb{R}$.

Solution:

Since a = a - b + b, then $|a| = |a - b + b| \le |a - b| + |b|$, and hence $|a| - |b| \le |a - b|$. Also, since b = b - a + a, then $|b| = |b - a + a| \le |b - a| + |a|$, and hence $|b| - |a| \le |b - a| = |a - b|$. Now, $|b| - |a| \le |a - b| \Leftrightarrow -|a - b| \le -|b| + |a|$ and hence $-|a - b| \le |a| - |b|$. Also we have $|a| - |b| \le |a - b|$. Thus $-|a - b| \le |a| - |b| \le |a| - |b| \le |a| - |b| \le |a| - |b| \le |a - b|$.

(b) Let $\{x_n\}$ be a sequence of real numbers such that $\lim_{n \to \infty} x_n = x \in \mathbb{R}$. Prove that $\lim_{n \to \infty} |x_n| = |x|$.

Solution:

We have that $||a| - |b|| \le |a - b|$, $\forall a, b \in \mathbb{R}$. Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} x_n = x$, therefore there exists $N \in \mathbb{N} \Rightarrow$ if $n > N \Rightarrow |x_n - x| < \epsilon$. Now, if $n > N \Rightarrow ||x_n| - |x|| \le |x_n - x| < \epsilon$. Thus $\lim_{n \to \infty} |x_n| = |x|$.

(c) Let $\{a_n\}$ be a sequence such that $|a_n - 5| \le \frac{1}{n^2}$ for all $n \in \mathbb{N}$. Prove that $\lim_{n \to \infty} a_n = 5$. [3]

Solution:

Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} \frac{1}{n^2} = 0$, therefore there exists $N \in \mathbb{N} \ni \text{ if } n > N \Rightarrow \frac{1}{n^2} = \left|\frac{1}{n^2}\right| < \epsilon$. Now, if $n > N \Rightarrow |a_n - 5| \le \frac{1}{n^2} = \left|\frac{1}{n^2}\right| < \epsilon$. Thus $\lim_{n \to \infty} a_n = 5$.

[4]

[4]