Cauchy Sequence

Dr.Hamed Al-Sulami

November 26, 2012

5.1 Cauchy Sequence

Definition 5.1: A sequence $\left\{x_{n}\right\}$ of real numbers is said to be Cauchy sequence if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that if $n, m>N \Rightarrow\left|x_{n}-x_{m}\right|<\epsilon$.

Note 5.1: A sequence is Cauchy if the terms eventually get arbitrarily close to each other.
Example 5.1: The sequence $\left\{\frac{1}{n}\right\}$ is Cauchy. To see this let $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ such that $\frac{1}{N}<\frac{\epsilon}{2}$. Now, if $n, m>N \Rightarrow\left|\frac{1}{n}-\frac{1}{m}\right| \leq \frac{1}{n}+\frac{1}{m}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.

Example 5.2: The sequence $\left\{\frac{n}{n+1}\right\}$ is Cauchy. To see this let $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ such that $\frac{1}{N}<\frac{\epsilon}{2}$. Now, if $n, m>N \Rightarrow\left|\frac{n}{n+1}-\frac{m}{m+1}\right|=\left|\frac{(m+1) n-m(n+1)}{(n+1)(m+1)}\right| \leq\left|\frac{n-m}{n m}\right|<\frac{1}{n}+\frac{1}{m}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.

Lemma 5.1: Let sequence $\left\{x_{n}\right\}$ be a Cauchy sequence of real numbers. Then $\left\{x_{n}\right\}$ is bounded.
Proof: Since $\left\{x_{n}\right\}$ is a Cauchy sequence, then there exists $N \in \mathbb{N}$ such that if $n, m>N \Rightarrow\left|x_{n}-x_{m}\right|<3$.

$$
\text { if } n, m>N \Rightarrow\left|x_{n}-x_{m}\right|<3
$$

$$
\begin{aligned}
& \text { let } m=N+1, \text { if } n>N \Rightarrow\left|x_{n}-x_{N+1}\right|<3 \quad \text { Note: }\left|x_{n}\right|-\left|x_{N+1}\right| \leq\left|x_{n}-x_{N+1}\right| \\
& \Rightarrow\left|x_{n}\right|-\left|x_{N+1}\right| \leq\left|x_{n}-x_{N+1}\right|<3 \\
& \text { if } n>N \Rightarrow\left|x_{n}\right|<3+\left|x_{N+1}\right| . \\
& \text { Let } M=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \cdots\left|x_{N}\right|,\left|x_{N+1}\right|+3\right\} \\
& \text { Now, if } n>N \Rightarrow\left|x_{n}\right|<3+\left|x_{N+1}\right| \leq M \\
& \text { Now, if } n \leq N \Rightarrow\left|x_{n}\right|<\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \cdots\left|x_{N}\right|\right\} \leq M \\
& \text { Thus } \forall n \in \mathbb{N},\left|x_{n}\right| \leq M .
\end{aligned}
$$

Theorem 5.1: [Cauchy Convergence Criterion]

A sequence of real numbers is convergent if and only if it is a Cauchy sequence.
Proof: Let $\left\{x_{n}\right\}$ be a sequence of real numbers.
(\Rightarrow) Suppose that $\lim _{n \rightarrow \infty} x_{n}=x \in \mathbb{R}$. We want to show that $\left\{x_{n}\right\}$ is Cauchy sequence. Let $\epsilon>0$ be given. Since $\lim _{x \rightarrow \infty} x_{n}=x$ then there exist $N \in \mathbb{N}$ such that if $n>N \Rightarrow\left|x_{n}-x\right|<\frac{\epsilon}{2}$. Also, if $m>N \Rightarrow\left|x_{m}-x\right|<\frac{\epsilon}{2}$.
Now, if $n, m>N \Rightarrow\left|x_{n}-x_{m}\right|=\left|x_{n}-x+x-x_{m}\right| \leq\left|x_{n}-x\right|+\left|x_{m}-x\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Thus $\left\{x_{n}\right\}$ is a Cauchy sequence.
(\Leftarrow) Suppose that $\left\{x_{n}\right\}$ is a Cauchy sequence. We want to show that $\left\{x_{n}\right\}$ is convergent. Let $\epsilon>0$ be given. Since $\left\{x_{n}\right\}$ is a Cauchy sequence, then it is bounded. Hence $\left\{x_{n}\right\}$ has a converge subsequence $\left\{x_{n_{k}}\right\}$. Suppose $\lim _{k \rightarrow \infty} x_{n_{k}}=x \in \mathbb{R}$. There exist $N_{1}, N_{2} \in \mathbb{N}$ such that if $n, m>N_{1} \Rightarrow\left|x_{n}-x_{m}\right|<\frac{\epsilon}{2}$ and, if $k>N_{2} \Rightarrow\left|x_{n_{k}}-x\right|<\frac{\epsilon}{2}$. Now, fix $k>N_{2}$ such that $n_{k}>N_{1}$ and, if $n>N_{1} \Rightarrow\left|x_{n}-x_{n_{k}}\right|<\frac{\epsilon}{2}$ and $\left|x_{n_{k}}-x\right|<\frac{\epsilon}{2}$. Now, if $n>N_{1} \Rightarrow\left|x_{n}-x\right|=$ $\left|x_{n}-x_{n_{k}}+x_{n_{k}}-x\right| \leq\left|x_{n}-x_{n_{k}}\right|+\left|x_{n_{k}}-x\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Thus $\left\{x_{n}\right\}$ converges .

Example 5.3: Prove that any sequence of real numbers $\left\{x_{n}\right\}$ which satisfies $\left|x_{n}-x_{n+1}\right|=\frac{1}{5^{n}}, \quad \forall n \in \mathbb{N}$ is convergent.

Solution:

$$
\text { If } \begin{aligned}
m>n \Rightarrow\left|x_{n}-x_{m}\right| & =\left|x_{n}-x_{n+1}+x_{n+1}+x_{n+2}+\ldots+x_{m-1}-x_{m}\right| \\
& \leq\left|x_{n}-x_{n+1}\right|+\left|x_{n+1}+x_{n+2}\right|+\ldots+\left|x_{m-1}-x_{m}\right| \\
& =\frac{1}{5^{n}}+\frac{1}{5^{n+1}}+\ldots+\frac{1}{5^{m-1}} \\
& =\frac{1}{5^{n-1}}\left(\frac{1}{5}+\frac{1}{5^{2}}+\ldots+\frac{1}{5^{m-n}}\right) \\
& =\frac{1}{5^{n-1}} \sum_{k=1}^{m-n} \frac{1}{5^{k}} \\
& =\frac{1}{5^{n-1}}\left(1-\frac{1}{5^{m-n}}\right) \\
& <\frac{1}{5^{n-1}} .
\end{aligned}
$$

Note that: $\left(1-\frac{1}{5^{m-n}}\right)<1$

Let $\varepsilon>0$ be given, choose $N \in \mathbb{N}$ such that $\frac{1}{5^{n-1}}<\epsilon$.
Now, if $n, m>N \Rightarrow\left|x_{n}-x_{m}\right|<\frac{1}{5^{n-1}}<\epsilon$.

Thus $\left\{x_{n}\right\}$ is convergent.

