Math 251

Assignment 3

Mariam Kreydem
All exercises from 1- 10 can be found in the book of Kenneth Rosen, seventh edition.

Due date 20/01/1437

- 1. Determine the truth value of each of these statements if the domain for all variables consists of: (i) all integers.
 - (ii) all real numbers.

```
(a) \forall n \exists m (n^2 < m).
```

(b)
$$\exists n \forall m (n < m^2)$$
.

(c)
$$\forall n \exists m(n+m=0)$$
.

(d)
$$\exists n \forall m (nm = m)$$
.

(e)
$$\exists n \exists m(n^2 + m^2 = 5)$$
.

(f)
$$\exists n \exists m(n^2 + m^2 = 6)$$
.

(g)
$$\exists n \exists m (n+m=4 \land n-m=1)$$

(h)
$$\exists n \exists m (n+m=4 \land n-m=2)$$

(i)
$$\forall n \forall m \exists p (p = (m+n)/2)$$

(j)
$$\forall x (x \neq 0 \rightarrow \exists y (xy = 1))$$

(k)
$$\exists x \forall y (y \neq 0 \rightarrow xy = 1)$$

- 2. Suppose the domain of the propositional function P(x, y) consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2, or 3. Write out these propositions using disjunctions and conjunctions.
 - (a) $\forall v \forall y P(x, y)$.
 - (b) $\exists x \exists y P(x, y)$.
 - (c) $\exists x \forall y P(x, y)$.
 - (d) $\forall y \exists x P(x, y)$.
- 3. Express the negations of each of these statements so that all negation symbols immediately precede predicates.
 - (a) $\exists y \exists x P(x, y)$
 - (b) $\forall x \exists y P(x, y)$
 - (c) $\exists y (Q(y) \land \forall x \neg R(x,y))$
 - (d) $\exists y (\exists x R(x, y) \lor \forall x S(x, y))$
 - (e) $\exists y(\forall x \exists z T(x, y, z) \lor \exists x \forall z U(x, y, z))$
 - (f) $\forall x \exists \forall z T(x, y, z)$
 - (g) $\forall x \exists y (P(x,y) \lor \forall \exists Q(x,y))$
 - (h) $\forall x \exists y (P(x,y) \land \exists z R(x,y,z))$
 - (i) $\forall x \exists y (P(x,y) \to Q(x,y))$

- 4. Find a common domain for the variables x, y, z, and w for which the statement $\forall x \forall y \forall z \exists w ((w \neq x) \land (w \neq y) \land (w \neq z))$ is true and another common domain for these variables for which it is false.
- 5. Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.
 - (a) $\forall x \forall y (x^2 = y^2 \to x = y)$.
 - (b) $\forall x \exists y (y^2 = x)$.
 - (c) $\forall x \forall y (xy \ge x)$.
 - (d) $\forall x \exists y (x = 1/y)$.
 - (e) $\forall x \exists y (y^2 x < 100)$.
 - (f) $\forall x \forall y (x^2 \neq y^3)$.
- 6. Determine the truth value of the statement $\forall x \exists y (xy = 1)$ if the domain for the variables consists of.
 - a) the nonzero real numbers.
 - b) the nonzero integers.
 - c) the positive real numbers.
- 7. Determine the truth value of the statement $\exists x \forall y (xy^2)$ if the domain for the variables consists of
 - a) the positive real numbers.
 - b) the integers.
 - c) the nonzero real numbers.
- 8. Show that the two statements $\neg \exists x \forall y P(x,y)$ and $\forall x \exists y \neg P(x,y)$, where both quantifiers over the first variable in P(x,y) have the same domain, and both quantifiers over the second variable in P(x,y) have the same domain, are logically equivalent.
- 9. Show that $\forall x P(x) \land \exists x Q(x)$ is logically equivalent to $\forall x \exists y (P(x) \land Q(y))$, where all quantifiers have the same nonempty domain.
- 10. Show that $\forall x P(x) \lor \exists x Q(x)$ is equivalent to $\forall x \exists y (P(x) \lor Q(y))$, where all quantifiers have the same nonempty domain.

- 11. Find the negation of the following statements:
- (a). Any rectangular triangle has a right angle.
- (b) For any integer $x \in \mathbb{Z}$, there exists an integer $y \in \mathbb{Z}$ such that, for any $z \in \mathbb{Z}$, the inequality z < x implies z < x + 1.

(c)
$$\forall \epsilon > 0 \forall x \in \mathbb{R} \exists \delta > 0 \forall y \in \mathbb{R} (|y - x| < \delta \to |f(y) - f(x)| < \epsilon).$$

(d)
$$\forall \epsilon > 0 \exists N \in \mathbb{N}[(x \in \mathbb{Z} \land \forall n \ge N) \to |f_n(x) - f(x)| < \epsilon].$$

(e)
$$\forall x \in \mathbb{R} \forall y \in \mathbb{R}[x = y \leftrightarrow (\forall \epsilon > 0 \to |x - y| < \epsilon)].$$