MATH 251 Assignment 2: Principle of Mathematical Induction

The due date for this assignment is

- 1. Let P(n) be the statement that $1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6$ for the positive integer n.
 - (a) What is the statement P(1)?
 - (b) Show that P(1) is true, completing the basis step of the proof.
 - (c) What is the inductive hypothesis?
 - (d) What do you need to prove in the inductive step?
 - (e) Complete the inductive step, identifying where you use the inductive hypothesis.
 - (f) Explain why these steps show that this formula is true whenever n is a positive integer.
- 2. Use Principle of Mathematical Induction to prove that:
 - (1) $1^2+3^2+5^2+\ldots+(2n+1)^2 = (n+1)(2n+1)(2n+3)/3$, whenever n is a non-negative integer.

(2)
$$2+4+6+...+2n = n(n+1)$$
, whenever *n* is a positive integer.

- (3) $1+4+7+...+(3n-2)=\frac{1}{2}[n(3n-1)]$ whenever *n* is a natural number.
- (4) $2+5+8+...+(3n-1)=\frac{1}{2}[n(3n+1)]$ whenever *n* is a natural number.
- (5) $1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$ whenever *n* is a positive integer.
- (6) $1^3 + 2^3 + \dots + n^3 = \frac{n^2 (n+1)^2}{4} = \left[\frac{n (n+1)}{2}\right]^2$ whenever *n* is an integer.
- (7) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 \frac{1}{2^n}$ whenever *n* is a natural number.
- (8) $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! 1$, whenever n is a positive integer.
- (9) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ whenever *n* is a positive integer.
- (11) $3 + 3 \cdot 5 + 3 \cdot 5^2 + \dots + 3 \cdot 5^n = 3(5^{n+1} 1)/4$ whenever n is a nonnegative integer.

(12)
$$a + ar + ar^2 + ... + ar^n = \frac{ar^{n+1} - a}{r-1}$$
 whenever n is a nonnegative integer.

- 3. Let P(n) be the statement that $n! < n^n$, where n is an integer greater than 1.
 - (a) What is the statement P(2)?
 - (b) Show that P(2) is true, completing the basis step of the proof.
 - (c) What is the inductive hypothesis?
 - (d) What do you need to prove in the inductive step?
 - (e) Complete the inductive step.
 - (f) Explain why these steps show that this inequality is true whenever n is an integer greater than 1.
- 4. Use Principle of Mathematical Induction to prove the following inequalities:
 - (1) $3^n < n!$ if n is an integer greater than 6.
 - (2) $2^n > n^2$ if n is an integer greater than 4.
 - (3) $n < 5^n$ whenever n is a positive integer.
- 5. Use Mathematical Induction to prove divisibility facts.
 - (a) 2 divides $n^2 + n$ whenever n is a positive integer
 - (b) 3 divides $n^3 + 2n$ whenever n is a positive integer.
 - (c) 5 divides $n^5 n$ whenever n is a nonnegative integer.
 - (d) 24 divides $5^{2n} 1$ whenever *n* is an integer.
 - (e) 3 divides $2^{2n-1} + 1$ whenever n is a positive integer.