

Resistance of Elements

- Many loads act like pure resistors:
 - Heater Bars
 - Lamps
- But not all:
 - Most Rotating Machines
 - Florescent Lights

Electrical & Computer Engineering

King Abdulaziz University

Slide 49

Resistors

- **Power Rating**
 - 1/4 Watt, 1/2 Watt, ...
- **Temperature Variation**
 - 10ppm, 500ppm, ...
 - $R = f(T) \rightarrow$ $R = R_0 \times (1 + \alpha \cdot \Delta T)$ $R = R_0 \times \left(1 + \alpha \cdot \Delta T + \beta \cdot \Delta T^2\right)$ $R = R_0 \times e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)}$

$$R = R_0 \times e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)}$$

Electrical & Computer Engineering

King Abdulaziz University

Slide 51

Parallel and Series

More Resistance vs. More Admittance

$$R_T = R_1 + R_2 + R_3$$

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$R_T = 6 + \frac{1}{\frac{1}{10} + \frac{1}{10}} = 6 + \frac{10}{2} = 11\Omega$$

Electrical & Computer Engineering

King Abdulaziz University

Slide 52

Process Check

- So many components, so what?
 - What exactly do I need to know about electronic components?
 - Are there other important components I should know about?
 - Up to what level should a non-EE engineer get to know the details?

Electrical & Computer Engineering

King Abdulaziz University

Slide 82