THE FOURTH SAUDI ENGINEERING CONFERENCE, NOY. 1995 - VOLUME 1Y

ON ROBOT PROGRAMMING AND LANGUAGES

A. M. Al-Qasimi, M. Akyurt and F.M. Dehlawi
College of Engineering, King Abdulaziz University, Jeddah

ABSTRACT. A review of developments in the area of robot
programming is given. Manual and powered lead-through methods are
discussed, along with programming issues like the planning of
manipulator trajectories, speed and workcell control, and branching.
The main limitations of the lead-through methods are stated.

High level programming languages for industrial robots are introduced.
The concepts of robot-oriented programming and task-level
programming are discussed. The outstanding features of high-level
languages are summarized. New developments to be expected from the
next generation of languages are stated.

1. INTRODUCTION

Robot programming is concerned with teaching the robot its work cycle. It involves
activities such as defining the motion paths within the workspace, interpreting sensory
information, actuating the end effector, sending signals to and recieving data from other
devices, and making computations and decisions about the work cycle. There are several
methods used for programming a robot; they basically fall into one of the two categories
discussed below.

2. LEAD-THROUGH METHODS

In the early 1960’s robot programming started by using a teach-by-showing method. It
requires the programmer to physically move the manipulator through the desired motion
path which is then commited to memory by the robot controller. There are two methods
to accomplish this.

2.1 Manual Lead-through (Walk Through)

In this method the programmer physically grabs the robot arm and manually moves it
through the desired motion/cycle. This is useful for defining a continuous path, where
the work cycle involves smooth complex curvilinear movements of the robot arm, such
as used in spray painting, or in continuous arc welding. The motion cycle is divided into
hundreds or even thousands of individual, closely spaced, points along the path, which
are thep recorded in memory.

2.2 Powered Lead-through

In this method, a teaching pad, which is a hand-held control box with toggle switches,
dials and buttons, is used to power-drive and regulate the robot’s physical movements
and programming capabilities. This is the most commonly used method for programming

249

today’s robots. It is limited, however, to point-to-point motions rather than continuous
movement because of the difficulty involved in using the teaching pad to control complex
geometric motions in space. The reason this method is so widely used is that many robot
applications consist of point-to-point movemeants, as in movement of parts, and in spot
welding.

In both the manual and the powered lead through cases a series of points in space are
recorded into the controller’s memory for subsequent playback during the work cycle.
The controller in such systems has two modes of operation; a feach mode for
programming, and a run mode for executing the program.

2.3 Programming issues involved

2.3.1 Planning of manipulator trajectories Given two endpoints of a path in space, obstacle
constraints, and path constraints, the robot controller must come up with an
approximation of the desired path consisting of a sequence of time-based control-set
points of movement from start to destination endpoints of the path. This can be done
by interpolation, using a class of polynomial functions. The path endpoints can be
specified either in Joint-coordinates, or in Cartesian coordinates. It is easier to visualize
the correct end-effector configurations in Cartesian coordinates than in joint-coordinates.
Besides, joint-coordinates are not orthogonal in most manipulators and do not separate
position from orientation. Because of this, Cartesian coordinates are commonly used to
specify the endpoints of a manipulator path, and a coversion routine can be used if
joint-coordinates are desired.

There are a number of possible trajectories between two endpoints in space, depending
on the motion interpolation method specified by the programmer. The possibilities
include

® Joint interpolation, where the manipulator is moved along a smooth polynomial
trajectory satisfying the position and orientation constraints at both endpoints [1].

® Straight line interpolation, where the manipulator is moved along a straight line
path connecting both endpoints [1].

e Circular interpolation, where the programmer is required to specify a circle in the
workspace by giving three points on the circle. The controller computes a series of
points that can approximate the circle in short straight line segments.

® Irregular motion path is used in manual lead-through to specify a continuous path.
Points are used for interpolation to generate thousands of points to be followed.

Methods for computing joint and straight-line interpolations are given in [1]. The
algorithms used in the computaions, however, depend on the anatomy of the robot, i.e.,
polar, cylindrical, Cartesian, or jointed arm [2].

2.3.2 Speed control The speed at which the robot manipulator will run can be specified
during programming by using the dials on the teaching pad to set the speed of different
parts of the program. In the lead-through method, the speed is not usually given as a
linear velocity at the tip of the end effector because it depends on the number of moving
axes at one time, the current axis configuration, and the Joad carried by the manipulator.
This leads to computational complexities in determining the velocity.

250

2.3.3 Workcell control The activities of various equipment in the robot workcell must be
coordinated to avoid hazards, errors, and the like. A robot controller would have
predefined input and output lines of communication carrying signals between the
controller and sensors and /or other external devices in the workcell. Push-buttons on the
teaching pad may exist for inserting three basic coordination commands.

e SIGNAL M: instructs the controller to output a signal through output line M.

e WAIT N: The robot must wait at current location until a signal on line N is
received.

e DELAY X: The robot should wait X seconds before proceeding to the next
program step.

2.3.4 Branching This capability allows the programmer to divide a program into one or
more sections, each of which can be thought of as a subroutine that can be called one
or more times during program execution. Most controllers allow a branch to be assigned
one name from an established group of names, enable incoming signals to invoke a
branch, and allow the programmer to specify whether the signal should cause the
currently executing branch to be interrupted or wait until it is completed. Executing a
branch could then be driven either by a sensor signal, a signal from an external device,
or by directly calling the branch by name from within the program. Branching allows
more than one task to be programmed into one robot and signals from sensors or other
external devices to be used for activating the appropriate branch for the task.
Interruption could also be used to activate error handling branches.

Relocatable branching allows the programmer to specify a branch involving a set of
incremental points in space relative to some defined starting point for the branch. This
allows the same set of movements to be performed at different locations in the work
place. Methods for specifying branching and branch definitions vary from one robot to
another, but a branching capability would boost the programming efficiency, making it
easier to edit, and result in shorter programs.

2.3.5 Limitations of Lead-through Methods The limitations of these methods are basically
threefold. The robot can not be used in production while it is being programmed. It
becomes increasingly difficult to program a robot as task complexity is increased. This
kind of programming is not compatible with modern computer-based technologies such
as CAD/CAM systems, networked data communications, and CM (Computer
Manufacturing) systems.

3. HIGH LEVEL PROGRAMMING LANGUAGES

Most of the robot programming languages of today use a combination of textual
highlevel programming to define the logic and sequence of the program, and teaching
pad programming to define the specific point Jocations in the workspace. The first high
level robot language was developed in 1973 as an experimental language called WAVE
at the Stanford artificial intelligence laboratory. It demonstrated the feasibility of robot
hand-eye coordination [2].

Development of a subsequent language called AL began at Stanford in 1974. AL could
be used to control multiple arms in tasks requiring arm coordination. In 1979, the first
commercially available robot high level language called VAL was introduced by
Unimation, Inc. It included many of the concepts of WAVE and AL. Later, in 1984, it

251

was upgraded to VAL II.

In 1976, IBM started developing a high level language for robots. The result was two
languages, AUTOPASS and AML. In 1982, AML was made commercially available for
IBM robotic products. Other languages include RAIL, introduced in 1981 by Automatix
for robot assembly and arc welding; MCL, which was developed by McDonnel-Douglas
as an enhancement to APT, the numerical-control part-programming language; and the
robot programming language, HELP, available from the General Electric company.

All languages mentioned above fall into one of two main robot programming language
categories according to their programming approach. Those categories are:

3.1 Robot-oriented Programming

In this category, an assembly task is explicitly described as a sequence of robot motions.
Each program statement corresponds, roughly, to one robot action. Such languages are
usually built as extensions to an existing ordinary high level programming language, such
that robot programming requirements are met. Most current robot programming
languages are of this type. They are characterized by the steps taken to develop a robot
program:

A. The workspace is setup, and parts are fixed by use of fixtures and feeders.

B. Location of parts, specified as an orientation and a position, and part’s features are
defined, using the data structures provided by the language.

C. The required task is partitioned into a sequence of actions, like move, grasp, etc..

D. Sensory commands are added to detect error conditions and monitor the progress
of a task.

As tasks became more and more complex, the programming process became increasingly
difficult because too many details are required to be provided by the programmer.

3.2 Task-level Programming

In this category, an assembly task is described as a sequence of positional goals of objects
rather than the motions needed to reach these goals. So there is no explicit robot
motion to be specified. The programming approach is simpler than before. The steps
involved are also the characteristics of these languages:

A. World Modeling, which is to form a data base describing the geometric and physical
properties of the objects, including the robot itself, and their assembly state in the
workplace.

B. Task Specification, as a sequence of states of the world model, or as a sequence of
symbolic operations on the objects.

C. Robot Program Synthesis is computationally similar to the idea of automatic
program generation. Given a world model, and a task specification, an
automatically generated robot program is required.

The first and second steps are to be done by the programmer, while the third step is to
be performed by the programming language processor. It is one of the most difficult
phases of producing a robot program. Research in this area is still active to solve many
of the difficulties involved, such as task planning, grasp planning, trajectory planning,
obstacle avoidance, and sensory information utilization. Languages of this type are few,

252

and most of them lack something in the synthesis part. Task level programming
languages include AUTOPASS and AL.

3.3 Features of High-level Languages
Regardless of the programming approach taken, a robot programming language of today
must have built-in modules or commands offering the following features:

® Motion control, to define manipulator motions, speed, interpolation method(s),
branching, and sensor commands.

® Sensor capabilities, to deal with binary and analog signals, and control external
devices using those signals.

® Intelligence, to be able to modify system behaviour in a programmed manner
depending on information about work environment, such as error recovery and the
like.

® Communication and data processing, to interface and communicate with other
computers and data bases for the purpose of keeping records, generating reports,
and controlling workcell activities.

Additional features that may be incorporated in a robot programming language include
real-time processing, parallel, distributed, and pipelined architectures and algorithms,
artificial intelligence, advanced sensory information, such as machine vision and human
voice recognition, neural networks for adaptive learning, and graphical user interfaces
with graphical and virtual reality programming and simulation.

3.4 Next Generation Languages

The next generation of robot programming languages would be of the task-level type,
where the world model information is entered automatically using vision systems in the
workcell, and program synthesis is done entirely by the computer. The programmer
would only specify the task to be done either by voice or by written command of a high
level, such as "Assemble Computer”. Advanced techniques such as artificial intelligence,
neural networks, and object oriented programming/database systems and others may be
used.

4. LITRATURE ON ROBOT PROGRAMMING

Robot programming is a very active research subject, published litrature span a wide
range of related topics. Here is a sample of recently published work. On the subject of
robot-level programming more information is to be found in [1-28], while task-level
programming is discussed in [1, 29-41]. A brief description and a list of comparative
features of some current robot programming languages are presented in [42]. Recent
progress made in robot programming and task planning systems until 1990 is reviewed
in [43]. Off-line robot programming is an added advantage to a language because the
robot may be reprogrammed without having to be stopped for a long time. Some of the
languages used for off-line programming are given in |23, 25, 44-46].

Trajectory planning using neural networks is investigated in [47]. A parallel processing
approach for finding the shortest path between two endpoints using the wave-front
technique is reported in [48, 49]. A real-time trajectory generation technique for the
Multi-RCCL robot programming system is to be found in [S0]. Automatic path planning
for several arms handling one object and avoiding obstacles by moving the object from

253

one arm to another is given in [51)]. Fuzzy expert systems and evolutionary algorithms,
integrated to produce Fuzzy Evolutionary Algorithms, FEA, for automatic trajectory
generation are presented in [52].

Languages for describing objects are discussed in [53, 54]. A neural network model for
acquiring data from a solid modeling data base coupled with the uncertainty of the
grouping process that was used to perform the geometric classification of objects is
presented in [55]. A generic software safety verification and encoding language for safety
critical robot actions are given in [56].

Presentations of newly developed robot programming environments are in made in [9-
10, 25, 37-38, 45, 50, 57-59]. An offline programming system for programming, analysis
and interactive computer simulation of a general five axes manipulator is described in
[44]. Obstacle avoidance algorithms embedded in programming languages can be found
in [60-63]. The extending of programming languages for multi-robot coordination and
programming is presented in [64]. An off-line robot programming system, called
ROPSIM, acting as a true CIME-subsystem and allowing the reuse and exchange of
robot model definition data and program definition data with systems of other origins
and different functionalities is presented in [45].

In task planning, a configuration space approach for moving an object through a crowded
work space is presented in [65]. An elastic network approach for task planning and
obstacle avoidance is presented in [66]. An optimization technique for minimizing a
criterion function derived from the difficulty of state transitions is used for assembly
planning in [67]. An artificial intellegance approach for the automatic assembly planning
is to be found in [68]. A review of recent research in task planning can be found in [43].

Agent-based programming in which small software units are interacting in parallel is
found in [59], and a language based on that, called SAL (the SmartyCat Agent
Language), is presented in [69]. Some issues concerning agent based systems and parallel
programming are discussed in [70].

Graphical environments for robot programming make it easier to program and simulate
a robot. In [11], a behaviour-based graphical robot simulator, JC-3, is used to test the
"meta software" generated by an interactive graphical "agent editor”. An extension to the
C language, called SMALL, gives a graphical environment for robot programming [37],
and virtual reality is used to teach a robot an assembly task in virtual space [36].

The object-oriented paradigm is used in [16-17, 38], and a concurrent object-oriented
real-time robot programming language, called RSPL (Robot Schema Programming
Language), is described in [19].

Artificial Intellegence techniques are widely used for task-level and mobile robot
behaviour programming. For example, robot programming by human demonstration is
discussed in [32, 33]; Sensor based robot programming by creating robot skills is dicussed
in [71]); Redundant robots trajectory planning and programming based on relaxation
networks, M-Nets, and the NEM+ + language is presented in [72]; And a method for
behaviour specification in an unstructured environment for a simple robot insect is
reported in [73].

254

Neural networks are also being increasingly used to control and train robots, a s$ample
of the recent litrature describing their use is given in [74-92]. A neural network artificial
brain for controlling around 1000 behaviours in a "robot kitten" is reported as part of the
"CAM-Brain" project in [74]. A study showing the potential of neural networks in mobile
robot applications is given in [76]. A software tool, called ANNECS, for compiling a high
level object-orientd specification into a functionally equivalent neural network is
described in [82]. Methods for learning the robot’s inverse kinematics using neural
networks can be found in [83, 92].

5. CONCLUDING REMARKS

It is clear from the discussion above that programming of industrial robots and the
related languages have witnessed fundamental developments in the past two decades.
It is possible to predict that the developments to take place during the coming two
decades will enable the industrial robot to become a natural component of the
manufacturing environment. The challenges that remain are to render the programming
of robots as a user friendly exercise, and to bring down the initial cost of the robotic
system, without, naturally, sacrificing from the power of flexibility that today’s industrial
robots possess.

REFERENCES

1. Fu, KS,, Gonzalez, R.C,, and Lee, C.S5.G., Robotics: control, sensing, vision, and intelligence,
McGraw-Hill, 1987.

2. Groover, M.P.,, Weiss, M., Nagel, RN, and Odrey, N.G.,, Industrial Robotics: technology,
programming, and applications, McGraw-Hill, 1986.

3. Bonner, S. and Shin, K.G., "A comparative study of robot languages,” IEEE computer, vol.15, no.12,
1982, pp. 82-96.

4. Gruver, W.A,, et al., "Industrial robot programming languages: A comparative evaluation,” IEEE
Trans. Systems,Man,Cybern. vol. SMC-14, no.4, 1984, pp. 321-333.

5. Paul, R.P, Robot Manipulator: mathematics, programming, and control, MIT Press, 1981.

6. Snyder, W.E., Industrial Robots: computer interfacing and control, Prentice-Hall, 1985.

7. Hong, T., Xia, K., Xu, W., Chen, C,, Lu, L., "Six-joint industrial robot controller software system,”
Proc. TENCON *93, IEEE Region 10 Conference on *Comp., Comm., Control and Power Engg.’, vol 4,
1993, pp. 182-185.

8. Lees, D.S,, Leifer, L.J.,, "A graphical programming language for robots operating in lightly structured
environments,” Proc. IEEE Intl. Conf. on Robotics and Automation, vol.1, 1993, pp. 648-653.

9. Matsumoto, A., Ando, M., "Interactive robot programming system for educational use," Proc. IEEE
Intl. Workshop on Robot and Human Communication, 1992 pp. 419-424,

10. Rees, J., Donald, B., "Program mobile robots in Scheme,” Proc. IEEE Intl. Conf. Robotics And
Automation, vol.3, 1992, pp. 2681-2688,

11. Ojala, J., Inoue, K., Sasaki, K., Takano, M., "Interactive graphical mobile robot programming,” Proc.
TIEEE/RS]J Intl. Workshop Intelligent Robots and Systems, vol.3, 1991, pp. 1485-1490.

12. Duhaut, D., Monacelli, E., "Including control in the definition of a programming language for
multi-robots,” Proc. IEEE/RSJ Intl. Workshop Intelligent Robots and Systems, vol.3, 1991, pp.
1382-1387.

13. Duhaut, D., Bidaud, P, Fontaine, D., "TAda. A language for robot programming based on Ada,"
Robotics and Autonomous Systems, vol.9, no.4, 1992, pp. 299-304.

14. Liang, L., Crangle, C., Leifer, L., "A computational model for a robotic arm instructed by natural
language,” Proc. IEEE Intl. Conf. Systems, Man and Cybermnetics, 1990, pp. 451-456.

15. Gat, E.,"ALFA: a language for programming reactive robotic control systems," Proc. IEEE Intl. Conf.
Robotics and Automation, vol.2, 1991, pp. 1116-1121.

16. Boyer, M., Daneshmend, L K., Hayward, V., Foisy, A., "An object-oriented paradigm for the design
and implementation of robot planning and programming systems," Proc. IEEE Intl. Conf. Robotics and
Automation, vol.1, 1991, pp. 204-209.

255

17.

18.

19.

21

22,

23,

26.

27.

29.

30.

31.

32.

33

34.

3s.

36.

37.

1s.

39.

40.

41,

42,

43.

Hayward, V., Daneshmend, L.K., Foisy, A., Boyer, M., Demers, L.P., Ravindran, R., Ng, T., "The
evolutionary design of MCPL, the MSS command and programming language,” Proc. IEEE Intl.
Workshop on Intelligent Robots and Systems, vol.1, 1990, pp. 413-420.

Blomme, R.M., Van Campenhout, J.M., "Asynchronous parallel programming techniques for compliant
robot motions," Second Intl. Conf. on Software Engineering for Real Time Systems, 1989, pp. 204-208.
Pocock, G., "A distributed, real-time programming language for robotics,” Proc, IEEE Intl. Conf. on
Robotics and Automation, vol.2, 1989, pp. 1010-1015.

. Elmaghraby, A.S., "A robot control language,” Conf. Proc. IEEE SOUTHEASTCON, 1988, pp.

413-416.

Moore, G., "Robot programming: the language of labour?," Electronics and Power, v.31, Jul. 1985, pp.
499-502.

Rony, P.R,, Rony, K., "Introduction to robot programming in BASIC (book review),” The Industrial
Robot, v.12, Dec. 1985, p. 271.

Woodcock, R., "Robot Basic integrates functions to facilitate off-line programming,” Electronics, vol.57,
July 12, 1984, pp. 124-127.

. Holmes, D.S., "EARL; an easy robot language,” Robotics Age, vol.6, Nov., 1984, pp. 20-21.
. Fujiuchi, M., Nakamura, T., Yamaguchi, M., Ishiguro, Y., Mizutani, S., Nakano, M., "Development

of a robot simulation and off-line programming system,” SAE Technical Paper Series, Warrendale, PA,
USA, 1992, pp. 69-77.

Brown, P.1., An abstract device approach to the programming and monitoring of flexible assembly cells
(robotic cells), PhD Dissertation, Council for National Academic Awards, UK, 1991.

Bal, B.S., Studies in robot programming (Forth language, Automatic object location), PhD
Dissertation, Aston University, UK, 1990.

. Pauli, D., Adaptive robot training: Explorations in sensorless manipulation, MSc. Dissertation,

University of Calgary, Canada, 1990.

Binford, T.O., "The AL language for intelligent robots,” in Proc. IRIA Sem. Languages and Methods
of Programming Industrial Robots, 1979, pp. 73-87.

Lieberman, L.I,, and Wesley, M.A., "AUTOPASS: An automatic programming system for computer
controlled mechanical assembly,” IBM J. Res. Devel. vol.21, no.4, 1977, pp. 321-333.

Mujtaba, M.S., Goldman, R.A., and Binford, T., "The AL robot programming language,” Comput.
Engr., vol.2, 1982, pp. 77-86.

Kuniyoshi, Y., Inaba, M., lnoue, H., "Leaming by watching: extracting reusable task knowledge from
visual observation of human performance,” IEEE Trans. Robotics and Automation, Vol.10, N0.6, Dec.
1994, pp. 799-822.

Delson, N., West, H., "Robot programming by human demonstration: the use of human variation in
identifying obstacle free trajectories,” Proc. IEEE Intl. Conf. Robotics and Automation, vol.1, 1994,
pp. 564-571.

Shepherd, B., "Applying visual programming to robotics,” Proc. IEEE Intl. Conf. on Robotics and
Automation, vol.2, 1993, pp. 707-712,

Coste-Mainere, E., Espiau, B, Rutten, E., "A task-level robot programming language and its reactive
execution,” Proc. IEEE Intl. Conf. Robotics And Automation, vol.3, 1992, pp. 2751-2756.
Takahashi, T., Ogata, H., "Robotic assembly operation based on task-level teaching in virtual reality,”
Proc. IEEE Intl. Conf. Robotics And Automation, vol.2, 1992, pp. 1083-1088.

Smith, M.G., "An environment for more easily programming a robot,” Proc. IEEE Intl. Conf. Robotics
And Automation, vol.1, 1992, pp. 10-16.

Miller, DJ., Lennox, R.C., "An object-oriented environment for robot system architectures,” IEEE
Control Systems Magazine, Vol.11, No.2, Feb. 1991, pp. 14-23. ,

Holton, D.R.W., McKeever, J.D.M., McKeag, R.M., "Formal description techniques in robot
programming,” IEE Colloquium on Application of CASE Tools, Digest No.058, 1990, pp. 1/1-6.
Mahadevan, Sridhar, Connell, J.,, "Automatic programming of behavior-based robots using
reinforcement learning,” Artificial Intelligence, v.55, June 1992, pp. 311-365.

Koza, J.R., Rice, J.P., "Automatic programming of robots using genetic programming,” Proc. 10th Natl.
Conlf. on Artificial Intelligence, 1992, pp. 194-201.

Klafter, R.D., Chmielewski, T.A., and Negin, M., Robotic Engineering: an integrated approach,
Prentice-Hall, 1989.

Rondeau, J.M., and ELMaraghy, H.A., "Robot programming and task planning” Manuf. Rev.,vol 3,
no.4, 1990, pp. 245-251.

256

44,

45.

46.

47,

43.

49.

50.

51.

52

53.

54.

55.

56.

57.

58.

59.

61.

62.
63.

64.

65.

66.

67.

69.
70.

n.

Lee, D.M.A,, and ELMaraghy, W.H., "ROBOSIM. A CAD-based off-line programming and analysis
system for robotic manipulators,” Comput. Aided Eng. J. vol.7, no.5, 1990, pp. 141-148.

Nielsen, L.F., Trostmann, S., Trostmann, E., and Conrad, F., "Robot off-line programming and
simulation as a true CIME-subsystem,” Proc. IEEE Intl. Conf. Rob. Autom., 1992, pp. 1089-1094,
Carter, S., "Off-line robot programming: the state-of-the-art,” The Industrial Robot, v.14, Dec. 1987,
pp. 213-215,

Kyung, K., Ko, M., and Lee, B., "A hierarchical neural network structure for robot trajectory planning,”
Proc. 25th SICE annual Conf., 1990, pp. 833-836.

Suzuki, H., and Arimoto, S., "Parallel-processable recursive and heuristic method for path planning,”
Proc. Intl. Conf. Soil Mech. Found. Eng., 1989, pp. 616-618.

Ranganathan, N., Parthasarathy, B., Hughes, K., "A parallel algorithm and architecture for robot path
planning,” Proc. Eighth Intl. Parallel Processing Symposium, 1994, pp. 275-279.

Lloyd, J., and Hayward, V., "Real-time trajectory generation in Multi-RCCL," J. Rob. Syst., vol.10,
no.3, 1993, pp. 369-390.

Koga, Y., Latombe, J.-C., "On multi-arm manipulation planning,” Proc. IEEE Intl. Conf. Robotics and
Automation, vol.2, 1994, pp. 945-952.

Xu, HY., Vukovich, G., "Fuzzy evolutionary algorithms and autoematic robot trajectory generation,”
Proc. First IEEE Conference on Evolutionary Computation; IEEE World Congress on Computational
Intelligence, vol.2, 1994, pp. 595-600.

Grossman, D.D., and Taylor, R.H., "Interactive generation of object models with a manipulator,” IEEE
Trans. System,Man,Cybem. vol. SMC-8, n0.9, 1978, pp. 667-679.

Wesley, MA,, et al., "A geometric modeling system for automated mechanical assembly,” IBM I. Res.
Devel., vol.24, no.1, 1980, pp. 64-74.

Ali, A.L., Ali, D.L., and Ali, K.S,, "Undeterministic manipulation of solid models for robot program
synthesis,” Proc, Conf. Comput. Ind. Eng., vol.19, 1990, pp. 465-468.

Rahimi, M., and Xiadong, X., "Framework for software safety verification of industrial robot
operations,” Comput. Ind. Eng., vol.20, no.2, 1991, pp. 279-287.

Stewart, D.B., Schmitz, D.E., and Khosta, PK., "Implementing real-time robotic systems using
CHIMERA 11," Proc. Intl. Conf. systems engineering, 1990, pp. 252-257.

ELMaraghy, HA., and Laperriere, L., "Modelling and sequence generation for robotized mechanical
assembly,” Rob. Autom. Syst., vol.9, no.3, 1992, pp. 134-147.

Zanichelli, F., Caselli, S., Natali, A., Omicini, A., "A multi-agent framework and programming
environment for autonomous robotics,” Proc. IEEE Intl. Conf. Robotics and Automation, vol.4, 1994,
pp. 3501-3507.

. Brooks, R.A., "Planning collision free motion for pick-and-place operations,” Intl. J. Robotics Res.,

vol.2, no.4, 1983, pp. 19-44.

Lewis, R.A., and Bejczy, A K., "Planning considerations for a Roving robot with arm,” Proc. 3ed Intl.
It. Conf. Artificial Intelligence, 1973.

Lozano-Perez, T., "Robot programming,” Proc. IEEE, vol.71, no.7, 1983, pp. 821-841.
Lozano-Perez, T., and Wesley, M.A., "An algorithm for planning collision free paths among polyedral
obstacles,” Comm. ACM, vol.22, no.10, 1979, pp. 560-570.

Tsai, C., "Multiple robot ccordination and programming,” Proc. IEEE Intl. Conf. Rob. Autom., 1991,
pp. 978-985.

Lozano-Perez, T., "Task planning,” in Robot Motion: planning and control, (M. Brady, et al,, eds.),
MIT Press, 1983.

Wong, W.S,, and Funka-Lea, C.A., "An elastic net solution to obstacle avoidance tour planning," Intl.
Jt. Conf. Neural Networks, 1990, pp. 799-804.

Yoshikawa, T., Yokokohji, Y., and Yu, Y., "Assembly planning operation strategies based on the
degree of constraint," Proc. Intl. Conf. Soil Mech. Found. Eng., 1989, pp. 682-687.

. Garrod, W, and Everett, L.J., "A.S.A.P. Automated sequential assembly planner," Proc. ASME Intl

Comput. Eng. Conf. Expo., 1990, pp. 139-144.

Lim, W, "An agent-based approach for programming mobile robots,” Proc. IEEE Intl. Conf. Robotics
and Automation, vol.4, 1994, pp. 3584-3589.

Bozinovski, S., "Parallel programming for mobile robot control: agent-based approach,” Proc. 14th Intl.
Conf. Distributed Computing Systems, 1994, pp. 202-208.

Archibald, C,, Krieger, M., Petriu, E., "Software design of sensor-based robot skills,” Conf. Proc. 10th
Anniversary. IMTC/94, Advanced Technologies in I & M.; IEEE Instrumentation and Measurement
Technolgy Conference, vol.1, 1994, pp. 175-178.

257

72.

73.

74.

75.

76.

77.

78.

79.

80.

81,

82,

83.

84.

8s.

B6.

B7.

88,

89.

90.

91.

92.

Franchi, P., Morasso, P., Vercelli, G., Zaccaria, R., "Integrating force-fieilds methods in a robot
planning/programming language,” Fifth Intl. Conf. Advanced Robotics: Robots in Unstructured
Environments, vol.2, 1991, pp. 1170-175.

Mitchell, R.J., Keating, D.A., Kambhampati, C., "Learning strategy for a simple robot insect,” Intl.
Conf. Control, vol.1, 1994, pp. 492-497.

de Garis, H., "CAM-Brain: the genetic programming of an artificial brain which grows/evolves at
electronic speeds in a cellular automata machine," Proc. First IEEE Conf. on Evolutionary
Computation, vol.1, 1994, pp. 337-339, 339a-b.

Salichs, M.A., Puente, E.A., Gachet, D, Pimentel, J.R., "Leaming behavioral control by reinforcement
for an autonomous mobile robot,” Proc. Intl. Conf. on Industrial Electronics, Control, and
Instrumentation, vol.3, 1993, pp. 1436-1441.

Mohamed, A.S., "Future neuro mobile robots,” Second IEEE Conference on Control Applications,
vol.2, 1993, pp. 637-642.

Thrun, 8.B., "Exploration and model building in mobile robot domains,” IEEE Intl. Conf. on Neural
Networks, vol.1, 1993, pp. 175-180.

Fogarty, T.C., "Classifier systems for control,” IEE Colloquium on Genetic Algorithms for Control
Systems Engineering, Digest No. 19937130, 1993, pp. 8/1-3.

Werbos, P.J., "Neurocontrol and elastic fuzzy logic: capabilities, concepts, and applications,” IEEE
Transactions on Industrial Electronics, Vol.40, No.2, Apr. 1993, pp. 170-180.

Holland, O., Snaith, M., "Q-learning with generalisation: an architecture for real-world reinforcement
learning in a mobile robot,” Intl. Joint Conf, on Neural Networks, vol.1, 1992, pp. 287-292.

Lewis, M.A,, Fagg, A.H,, Solidum, A., "Genetic programming approach to the construction of a neural
network for control of a walking robot,” Proc. IEEE Intl. Conf. on Robotics And Automation, vol.3,
1992, pp. 2618-2623.

Vellacott, O.R., "ANNECS: a neural network compiler and simulator,” Intl. Joint Conf. on Neural
Networks, vol.2, 1991, p. 991.

Brause, R., "Optimal information distribution and performance in neighbourhood-conserving maps for
robot control,” Proc. 2nd Intl. 1IEEE Conf. on Tools for Artificial Intelligence, 1990, pp. 451-456.
Jansen, M,, Eckmiller, R., "Globally stable neural robot control capable of payload adaptation,” Proc.
Intl. Joint Conf. on Neural Networks, Part.1, 1993, pp. 639-642.

Bachelder, I.A., Waxman, A.M., "Mobile robot visual mapping and localization: a view-based
neurocomputational architecture that emulates hippocampal place leaming,” Neural Networks, vol.7,
no.6-7, 1994, pp. 1083-1099.

Baloch, A.A., Waxman, A M., "Visual learning, adaptive expectations, and behavioral conditioning of
the mobile robot MAVIN," Neural Networks, vol.4, no.3, 1991, pp. 271-302.

Glasius, R., Komoda, A., Gielen, §.C.A.M., "Neural network dynamics for path planning and obstacle
avoidance,” Neural Networks, vol.8, no.1, 1995, pp. 125-133.

Luebbers, P.G., Pandya, A S., "Vision-based path following by using a neural network guidance system,”
Journal of Robotic Systems, vol.11, no.1, 1994, pp. 57-66.

Sanger, T.D., "Neural network learning control of robot manipulators using gradually increasing task
difficulty," IEEE Trans. on Robotics and Automation, vol.10, June 1994, pp. 323-333,
Walter,J.A.,Schulten, K.J., "Implementation of self-organizing neural networks for visuo-motor control
of an industria] robot," IEEE Trans. on Neural Networks, vol.d, Jan. 1993, pp. 86-95.

Cousein, A., "Neural networks for robot control,” Third Intl. Conf. Software Engg. for Real Time
Systems, 1991, pp. 119-124.

Golnazarian, W., Shell, R., Hall, E.L., "Robot control using neural networks with adaptive learning
steps,” Proc. SPIE - The Intl. Society for Optical Engg., vol 1826, 1993, pp. 122-129.

258

