Introduction to Metal and Sand Casting

Fundamentals of Casting

- ➤ Casting, one of the oldest manufacturing processes, dates back to 4000 B.C. when copper arrowheads were made.
- ➤ Casting processes basically involve the introduction of a molten metal into a mold cavity, where upon solidification, the metal takes on the shape of the mold cavity.
- ➤ Simple and complicated shapes can be made from any metal that can be melted.
- Casting sizes range form few mm (teeth of a zipper) to 10 m (Ship propellers).

The Casting Industry

- 6.5 million kg of castings are produced every year
- The most common materials cast are gray iron, ductile iron, aluminum alloys, and copper alloys
- 35% of the market is in automotive and light truck manufacturing
- Castings are used in applications ranging from agriculture to railroad equipment, automobiles and aircrafts components, and heating and cooling equipments.

Capabilities and Advantages of Casting

- 1. Can create complex part geometries
- 2. Can create both external and internal shapes
- 3. Some casting processes are *net shape*; others are *near net shape*
- 4. Cast material is isotropic. It has the same physical and mechanical properties along any direction.
- 5. It is economical, with very little wastage: the extra metal in each casting is remelted and re-used
- 6. Can produce a wide variety of sized parts:
 - Large parts: engine blocks, cylinder heads, railway wheels, pipes.....etc.
 - Small parts: dental crowns, jewelry, gears, brake components.

Limitations of Casting

- 1. Limitations on mechanical properties
- 2. Poor dimensional accuracy and surface finish for some processes (sand casting)
- 3. Safety hazards to workers due to hot molten metals
- 4. Porosity (empty spaces within the metal reduces the strength of metal)

TABLE 5.2

TYPICAL APPLICATIONS FOR CASTINGS AND CASTING CHARACTERISTICS

TYPE OF ALLOY	APPLICATION	CAST- ABILITY*	WELD- ABILITY*	MACHIN- ABILITY*
Aluminum	Pistons, clutch housings, intake manifolds, engine blocks, heads, cross members, valve bodies, oil pans, suspen- sion components	G–E	F	G–E
Copper	Pumps, valves, gear blanks, marine propellers	F–G	F	G–E
Gray iron	Engine blocks, gears, brake disks and drums, machine bases	E	D	G
Magnesium	Crankcase, transmission housings	G-E	G	Ε
Malleable iron	Farm and construction machinery, heavy-duty bearings, railroad rolling stock	G	D	G
Nickel	Gas turbine blades, pump and valve components for chemical plants	F	F	F
Nodular iron	Crankshafts, heavy-duty gears	G	D	G
Steel (carbon and low alloy)	Die blocks, heavy-duty gear blanks, aircraft undercarriage members, railroad wheels	F	E	F-G
Steel (high alloy)	Gas turbine housings, pump and valve components, rock crusher jaws	F	E	F
White iron (Fe ₃ C)	Mill liners, shot blasting nozzles, railroad brake shoes, crushers and pulverizers	G	VP	VP
Zinc	Door handles, radiator grills, carburetor bodies	E	D	E

^{*}E, excellent; G, good; F, fair; VP, very poor; D, difficult.

Two Categories of Casting Processes

- 1. Expendable mold processes: uses a mold which is destroyed to remove casting:
 - **❖** Mold materials: sand, plaster, and similar materials, plus binders
 - Advantage: more complex shapes possible
 - Disadvantage: production rates often limited by time to make mold rather than casting itself
- 2. Permanent mold processes: uses a mold which can be used over and over:
 - **❖** Made of metal (or ceramic refractory material)
 - Advantage: higher production rates
 - Disadvantage: geometries limited by need to open the mold

Product Design Considerations

- 1. Geometric simplicity Avoid unnecessary complexity.
- 2. Corners Avoid sharp corners (preferred fillet radius).
- 3. Section thickness Uniform section thickness to avoid shrinkage cavities and hot spots.
- 4. Inclination allowance (draft) Facilitate removal of parts from mold in permanent casting, and for easy drag the pattern from the sand mold.
- 5. Use of cores minimize the use of core
- 6. Dimensional tolerance and surface finish proper choice of casting method.
- 7. Machining allowance For assembly purposes, typically 1.5 to 6 mm.
- 8. Shrinkage allowance For to compensating the shrinkage of the part.

Sand Casting

Casting Processes

- 1. Preparing a mold cavity of the desired shape with proper allowances (inclination, shrinkage, and machining).
- 2. Melting the metal with acceptable quality and temp.
- 3. Pouring the metal into the cavity and providing means for the escape of air or gases.
- 4. Solidification process, must be properly designed and controlled to avoid defects.
- 5. Mold removal.
- 6. Finishing, cleaning and inspection operations.
- 7. Heat treatment of casting is sometimes required to improve metallurgical properties