ANTITHROMBOTIC DRUGS

- 1- Antiplatelets: for prophylaxis of thromboembolic disease.
- 2- <u>Anticoagulants:</u> for ttt of thromboembolic disease.
- 3- *Fibrinolytics:* for *rapid dissolution* of thromboemboli

(1) Anticoagulants

Classification:

1) In vitro only anticoagulants:

- Substances which remove ionic calcium
- Used in laboratory blood samples
- They include:
 - a- Calcium precipitants: e.g.: Na or K oxalate

b- Diminished ionized calcium:

e.g.: Na citrate (in blood samples and banks) and EDTA.

2) In vivo anticoagulants:

1- Direct acting (Thrombin inhibitors):

- a- Indirect thrombin inhibitors:
 - Antithrombin III activator: *Heparins*
 - Unfructionated Heparin (UFH)
 - Low molecular weight Heparin (LMWH)
 - Selective factor Xa inhibitor: Fondaparinux
- b- Direct thrombin inhibitors:
 - Hirudin
 - Recombinant hirudin (*Lepirudin Bivalirudin*)
 - Synthetic: (*Argatroban Ximelagatran*)

2- Indirect acting (Vit. K antagonists):

- a. <u>Coumarins:</u> *Dicoumarol Warfarin*
- b. Indanedione: Phenindion (Dindivan) Diphenadion

N.B: Oral anticoagulants include: vit. K antagonists & Ximelagatran

N.B: <u>Ancrod</u>: extract of viper venom that deplete circulating fibrinogen

	Heparin*	Warfarin	
	(Unfractionated heparin)	<u>v ar far m</u>	
Source	- Naturally found with histamine in	- Coumarin** is natural	
	mast cells in liver & lung	- Warfarin*** is Synthetic	
Chemistry:	- Mucopolysaccharide strongly acidic	- Coumarine derivative	
	with strong <i>electronegative charge</i>		
Kinetics:	- Parenteraly (I.V.) or (S.C) never I.M	- Given orally, bound to plasma	
	(haematoma)	protein	
	- Metabolized in liver and tissues (by	- Metabolized in liver	
	heparinase enzyme)	- Cross the placenta & secreted	
	- Not cross the placenta & Not	in milk (Not Allowed in pregnancy	
	secreted in milk (Allowed in	& lactation)	
	pregnancy & lactation)		
	- Excreted in urine	- Excreted in urine & milk	
<u>Onset &</u>	- Immediate after I.V.	- Delayed onset 1-2 days	
Duration:	- Short duration [4 hr after I.V.]	- Long duration [4-7 days]	
Actions:	1) <u>Anticoagulant</u> in vivo& vitro	1) <u>Anticoagulant</u> in vivo only	
	Potentiating the action of	\downarrow Vit.K reductase enz. $\rightarrow \downarrow$	
	antithrombin III which neutralizes	Conversion of vit.K epoxide into the	
	& inhibit many clotting factors	active form required for synthesis of	
	coagulation factors: II		
	(prothrombin),VII, IX, X		
	2) Linearnea clearing action due to 2) Redenticide		
	2) <u>Lipaemea clearing action</u> due to activation of lipoprotein lipase enz. 2) <u>Rodenticide</u>		
Dece	* Initially: 70-100 U / kg	Initially 10 mg/day 2 dagag	
Dose:		- Initially 10 mg/day 3 doses	
	* Maintenance: infusion 15-25 U/kg / - Maintenance 4-5 mg / day		
Control of the			
dose:	Prolonged 2-2.5 times	Prolonged to 2-2.5 times	
	(normally 5-7 min.)	(normally 12-15 seconds)	
	(2) Partial thromboplastin time	NB: International Normalized	
	<u>(PTT)</u> :	$Ratio_{INR}$ is more accurate	
	Prolonged 2-2.5 times	$= \frac{PT \text{ of patient}}{PT \text{ of normal}}$	
	(normally 30-40 sec.)		
Uses	1) Treatment of thromboembolic dise		
	- Myocardial infarction		
	- Pulmonary embolism		
	- Venous & Cerebral thrombosis		
	2) Prophylactic: of venous thrombosis & Pulmonary embolism [not effective		
	on arterial thrombosis]		
	3) Prevent blood clotting		
	During transfusion (heparin)		
	4) <u>In hyperlipidemia</u> (heparin)		

Comparison between Heparin and Warfarin

^{*}Heparin: was discovered by a medical student in 1916 in a physiological research to study clotting substances in the body. To his surprise he found that extract from the liver retarded the clotting process, and hence its name " hepa"

^{**}Coumarin: was discovered as an anticoagulant substance formed in spoiled sweet clover silage which caused hemorrhage in cattle

^{***}Warfarin: the name is derived from the patent holder, Wisconsin Alumni Research Foundation & "arin" from coumarin

	1) II and and a	1) Use and as a	
Side effects	1) Hemorrhage	1) Hemorrhage	
	2) Hypersensitivity	2) Hypersensitivity	
	3) Hyperkalemia (antagonize	3) Anorexia, nausea & vomiting	
	aldosterone)	4) Teratogenicity (Skeletal	
	4) Hair loss (transient alopecia)	abnormalities & hypoplastic nose)	
	5) Osteoporosis	5) Skin necrosis (rare): due to \downarrow of	
	6)* Thrombocytopenia &	synthesis of anticoagulants C & S	
	paradoxical thrombosis *		
<u>Antidote</u>	1) Protamine sulphate I.V.: 1 mg	1) <i>Vitamin K</i> ₁ : 50 mg I.V	
	for 100 U (1ml) heparin (Strongly		
	electro- positive charged)		
	2) Fresh blood transfusion	2) Fresh blood transfusion	
Contra-	1) Allergy to the drug		
indication	2) Liver & kidney disease		
	3) Anticoagulant not desired:		
	- Active T.B		
	- Subacute bacterial endocarditis		
	- Peptic ulcer & ulcerative colitis		
	4) Bleeding conditions:		
	- Bleeding tendency (haemophilia)		
	- Head injury		
	- Threatened abortion		
	- Visceral carcinoma		

Drug, food & disease interactions of Oral anti-coagulants

(1) ↑ Anti coagulant effect may be due to:

- 1. Kinetic interaction:
 - a- Displacement from plasma proteins by: Aspirin- Phenylbutazone-Indomethacin- Clofibrate- Sulphonamide- Sulphinpyrazone
 - b- HME inhibitor as Cimitidine- Chloramphenicol- Allopurinol
- 2. Dynamic interaction:
 - a-↓ vit K: -↓ synthesis by broad spectrum antibiotics, e.g.: Tetracycline
 -↓ absorption by liquid paraffin
 - b- \downarrow Platelet aggregation & function as
 - Aspirin S.D
 - Cephalosporins (third generation) [Also have anti vit K affect]
 - c- Androgen [due to ↑ turnover of clotting factors)
- 3. Pathological:. Liver disease, hyperthroidism

(2) \downarrow anti coagulant effect may be due to:

- 1. Kinetic interaction:
 - \downarrow Absorption as cholestyramine
 - ↑ Metabolism by HME inducers as phenobarbitone- rifampicin- griseofulvin
- 2. Dynamic interaction:
 - ↑ Clotting factors by estrogen
 - vit.K (including food rich in vit. K as green, leafy vegetables)
- 3. Pathological: Hypothyroidism & hereditary resistance

N.B: Choice of anticoagulant:

- Begin therapy with heparin and oral anticoagulant together then after 4-5 days withdraw heparin and maintain on oral anticoagulant for 3 months
- Heparin is used for emergency & during pregnancy

***N.B.: Heparin induced Thrombocytopenia:**

- Types:

- Type I: Mild Non immunologic induction of platelet aggregation
- *Type II:* Severe Immunological induced platelet aggregation due to formation of immune complexes
- May cause paradoxical thrombosis
- Management: Stop heparin & replace by another anticoagulant as direct thrombin inhibitors

LMW heparins

- Examples: Enoxaparin – Dalteparin – Rivaparin - Danaproid

- Mechanism of action:

potentiate the effect of antithrombin III selectively on activated factor X & have less effect on other coagulation factors.

- Differences versus Unfractionated heparin:

- They have equal efficacy to UFH
- increased S.C bioavailability
- Less frequent dose administration
- Can be given without laboratory monitoring

Direct thrombin inhibitors

- Uses:

As alternative to heparin for patients with heparin induced thrombocytopenia

- Differences versus Heparin:

They produce *a more predictable anticoagulant response* than UFH because they do not bind to plasma proteins & are not neutralized by platelet factor 4, a heparin-binding protein released from activated platelets.

- Include:

- Hirudin
- Recombinant hirudin (Lepirudin Bivalirudin)
- Synthetic: (Argatroban Ximelagatran)
- **N.B.:** *Ximelagatran* is the only one of this group which is given *orally*, while others are given IV

while others are given iv

N.B.: Drotrecogin Alfa (*Xigris*): is a recombinant form of protein C that *inhibits coagulation* by proteolytic inactivation of factors Va & VIIIa. It has also *anti-inflammatory* effect & used as IV infusion in cases of severe sepsis

2) Anti-Platelet Agents

Uses:

- 1- Prevention & treatment of occlusive cardiovascular disease (eg.: Angina)
- 2- Maintain vascular grafts & arterial patency
- 3- Adjuvant to thrombolytics during myocardial infarction

Classification & Mechanisms

(1) Drugs acting on Arachidonic acid metabolism:

1- \downarrow Thromboxane A₂ synthesis

- 1. Aspirin Small Dose (75-150 mg): selective \downarrow of platelet thromboxane
- 2. Dazoxiben: as aspirin Small dose
- 3. Sulphinpyrazone: \downarrow COX
- 4. Fish oil: abnormal thromboxanes

2- Prostacyclin analogue:

 \rightarrow Epoprostenol but very short t $\frac{1}{2}$

(2) Drugs that ↑ c. AMP & c.GMP:

- 1- 1 c. AMP
 - 1. Dipyridamol: \downarrow PDE enz \rightarrow \uparrow c. AMP
 - 2. Pentoxiphylline: as Dipyridamol
- 2- ↑ c. GMP

Nitrates & Nitroprusside \rightarrow release (NO) $\rightarrow \uparrow$ G.C $\rightarrow \uparrow$ c.GMP

(3) Drugs acting on platelet receptors:

- 1- Block ADP receptors [block ADP dependent activation of GP IIb/IIIa receptors]As: Ticlopidine & Clopidogrel
- 2- Block GP IIb /IIIa receptors:

Abciximab - Tirofiban - Integrelin - Eptifibatide

3) Fibrinolytics (Thrombolytics)

- <u>Uses:</u>

They produce dissolution of blood clot (Thrombosis or Embolism) of **recent onset** (as in myocardial infarction or peripheral arterial thrombosis)

- They include:

1) Streptokinase (Obtained from streptococci)

2) Urokinase

- 3) Tissue plasminogen activator [Alteplase]
- 4) Reteplase Tenecteplase
- 4) Anistreplase [APSAC]

- Mechanism of action: by activation of plasminogen

Plasminogen — Plasmin (fibrinolysin) — Dissolve fibrin

NB.:		
	Streptokinase:	Alteplase:
Mechanism	bind to plasminogen to form a	activate plasminogen that is bound to
	complex & this complex	fibrin
	converts Plasminogen 🔶	(it is fibrin selective)
	Plasmin (fibrinolysin)	
t 1/2	< 30 min.	< 5 min.
Dose	1.5 million IU over 30-60	100 mg IV
	min.	(10 mg initial bolus & the remaining
		IV infusion over 90 min.)

- Side effects:

- 1- Bleeding (The most important & most common)
- 2- Allergy (especially with Streptokinase)
- 3- Fever

- Contraindications:

- 1- Persistent hypertension
- 2- Aortic dissection
- 3- Trauma
- 4- Pregnancy
- 5- History of recent: surgery or cerbrovascular stroke
- 6- Active GIT bleeding

NB.: Antifibrinolysin:

Aminocaproeic acid & Tranexamic acid

Coagulants [Control of bleeding]

*Local haemostatics (styptics)

1) Local coagulants

- 1. Human fibrin (sponge)
- 2. Human fibrinogen
- 3. Human thrombin (powder)
- 4. Human thromboplastin (powder)
- 5. Oxidized cellulose (oxycel): mechanical blockage (artificial clot)
- 6. Sponge gelatin

2) V.C Adr. & noradr. In epistaxis

- 3) Astringent tannic acid, alum→ precipitate blood proteins
- 4) Physical method: [Pressure & cold]

<u>*Systemic coagulants:</u>

1) Vitamin K:

* Used to correct bleeding from hypoprothrombinaemia that may result from:

- 1. \downarrow Synthesis of vit.K by intestinal flora \rightarrow oral antibiotics
- 2. \downarrow Absorption of vit. K \rightarrow
 - Liquid paraffin Obstructive jaundice Malabsorption
- 3. \downarrow Hepatic utilization of vit.K \rightarrow hepatocellular damage newborn
- 4. Drug induced hypoprothrombenemia →
 - Oral anti coagulants Aspirin L.D.
- * Sources & Preparations
 - 1. Natural:
 - Vit. K₁ (phytonadione) orally or I.M.
 - It is found in food concentrated in liver
 - Vit. K₂ (menaquinone):
 - formed by intestinal bacteria concentrated in bone & blood vessels
 - **2. Synthetic** (more toxic):

Menadione & Menadione di-phosphate \rightarrow I.M – S.C

2) Vit. C & vit. P (Rutin) → used to treat capillary fragility as in bleeding gums & scurvy

<u>3) Antihaemophilic globulin (Factor VIII)</u>: I.V to treat bleeding from haemophilia <u>4) Antidote for drug toxicity causing bleeding</u>:

1- If due to thrombolytic drugs → Aminocaproic acid & Tranexamic acid

- 2- If due to heparin \rightarrow Protamine sulphate
- 3- If due to Oral anticoagulants eg.: Warfarin → vit.K

5) Thromboplastin (coagulin): I.M

6) Fresh blood transfusion:

NB: Sclerosing agents

Irritant substances injected in veins of legs and piles to initiate venous thrombosis 1) Sodium morhuate 2) Sylnsol 3) Sorietin

<u>Hyperlipoprotinemia</u>

Lipoproteins are classified to:

- 1) Chylomicron
- 2) VLDL: [Containing Triglyceride > Cholesterol ester] transporting lipids to peripheral tissue
- 3) LDL: [Containing mainly cholesterol ester]
- 4) HDL: transport cholesterol away from peripheral tissues to liver [protective]

Drugs management of hyperlipidemia

	<u>1) Statins</u> HMG – Co A reductase inhibitors	<u>2)Fibrates</u>	<u>3)Resins</u>
<u>Examples</u>	 Atorvastatin Pravastatin Lovastatin Simvastatin Fluvastatin 	ClofibrateEtofibrateFenofibrateGemfibrozil	CholestyramineColestipol
Mechanism	they ↓ HMG – Co A reductase enz [rate limiting enz] → ↓ cholesterol synthesis → compensatory ↑ in LDL receptors on hepateocytes → ↓ LDL & cholesterol	 ↓ Triglycerides through : ↑ Lipoprotein lipase enz. ↓ Hepatic synthesis of T.G & VLDL 	 they bind with bile acid → 1- ↓ Absorption of cholesterol 2- ↓ Absorption of bile → ↑ catabolism of cholesterol into bile acids → compensatory ↑ in LDL receptors → ↓ LDL & Cholester.

Blood

Side effects:	 Hepatotoxic → ↑ serum tansaminases Myopathy & myositis → ↑ serum creatine kinase Contra indicated in 	 Hepatotoxic → ↑ serum transaminases Myopathy & myositis → ↑ serum creatine kinase Contraindicated in 	
	pregnancy & lactation	 <i>pregnancy & lactation</i> 4. Cholesterol gall stones & cholecystitis 5. Displace other drugs from plasma proteins 	 Constipation Cholesterol gall stones & cholecystitis ↓ Absorption of vit. K & other drugs e.g.: digoxin & warfarin.

(4) Niacin: [nicotinic acid]

2. Mechanism: As Fibrates

- 3. <u>Side effects</u>:
 - 1. Pruritis & flushing due to release of PGs. Avoided by aspirin
 - 2. Hyperglycemia & hyperuricemia
 - 3. GIT disturbances

N.B Acipimox: as niacin with less side effects.

5) Ezetimibe:

- It \downarrow directly cholesterol absorption

- Metabolised in liver (not used in advanced liver disease)

(6) Probucol:

- 4. <u>Mechanism</u>: anti oxidants & \downarrow cholesterol synthesis
- 5. Side effects:
 - 1. GIT disturbances
 - 2. Fatal arrhythmia & long Q-T interval

(7) Others:

- 1. Neomycin \rightarrow as resins $\rightarrow \downarrow$ cholesterol absorption
- 2. B-.Sitosterol \rightarrow as resins $\rightarrow \downarrow$ cholesterol absorption
- 3. D- thyroxin: ↑ catabolism of cholesterol into bile acids & compensatory ↑ in LDL receptors

N.B: fish oil $\rightarrow \downarrow$ TG **but** \uparrow cholesterol

N.B: Alpha tocopherol [vit.E]:

Has no effect on lipid level but it \downarrow atheroma formation as it is a powerful antioxidant, & oxidation of LDL is essential for atheroma formation.

Antianaemic drugs

I - deficiency anemia

<u>Types of anaemia</u>

- I- Deficiency anaemia. (Iron B_{12} folic acid)
- II- Aplastic anaemia
- III- Haemolytic anaemia

Preparations:

Oral preparation

Ferrous sulphate - Ferrous gluconate - Ferrous fumarate - Iron choline citrate

Parenteral preparation

- 1. Iron Dextran I.M, I.V.
- 2. Iron sorbitol citric acid complex I.M. *only*

Side effects and toxicity:

Oral iron

- Gastric irritation, colicky pain, constipation or diarrhea & black stool
- Acute toxicity (usually, accidentally in children):
 - Manifistations:
 - Vomiting, abdominal pain, haematemesis and black or bloody diarrhea
 - Hypotension, collapse, coma, death in some cases

Treatment:

- 6. Gastric lavage with NaHCO₃ 1%
- 7. Iron chelating agents : **Deferoxamine** (desferal):
 - given by stomach tube I.M. or I.V. infusion
- 8. Symptomatic treatment (eg:fluids for dehydration & collapse)

Parenteral iron preparation

Local toxic effect:

- Pain at site of injection - Skin discoloration

Systemic toxic effect (Chronic toxicity = Haemosidrosis)

- Manifestations:

- Headache, malaise, convulsions, fever & fainting
- Nausea and vomiting Muscle and joint pains, haemolysis
- Tachycardia & Hypotension Bronchospasm

- Treatment:

- Intermittent phlebotomy (every weak), provided that there is no anemia

- Parentral Deferoxamine or Oral Deferasirox

NB.: Iron is contraindicated in haemolytic anemia, unless haemoglobinuria is present

NB.: Both iron & tetracycline inhibit absorption of each other

<u>2- Cyanocobalamine (vit. B₁₂)</u> Extrinsic factor, Antipernicious anaemia factor

The manifestations of deficiency are Pernicious anemia:

- 1. Macrocytic hypochromic anaemia
- 2. Peripheral neuritis and subacute combined degeneration

N.B: the primary cause for pernicious anemia is absence of intrinsic factor required

for absorption of vit B_{12} from terminal ileum

N.B: *Drugs that may inhibit absorption of vit. B*₁₂:

Neomycin – PAS (para-aminosalicylic acid) - Metformin

Uses:

- 1. Pernicious anemia and macrocytic anemia
- 2. Neuropathies
- 3. Hepatitis
- 4. Counteract catabolic action of cortisone

Preparations:

- 1. Cyanocobalamine : I.M. for life 1 mg
- 2. Hydroxocobalamine I.M. for pernicious anemia and cyanide poisoning

3- Folic acid

Fate:

- 1. By folic acid reductase \rightarrow tetrahydrofolic acid T.H.F.A. (active)
- 2. Both folic acid and B_{12} are closely interrelated

Conj. Folic acid $\xrightarrow{B_{12}}$ free folic acid $\xrightarrow{\text{vit. C, B}_{12}}$ T.H.F.A.

Uses:

- 1) Megalobastic anemia (nutritional and pregnancy)
- 2) Mal-Absorption Syndrome
- 3) With anticonvulsant drugs as phenobarb., primidone or phenytoin to correct associated marocytic anaemia.

<i>N.B</i> :	- In pernicious anaemia it must be given with vit. B_{12} otherwise
	neurological damage will proceed if folic a. is used alone
	- Methotrexate (used in cancer therapy) is antifolic acid

II- Agranulocytosis / Aplastic anaemia

Causes:

- 1) Analgesic → pyrazolone eg.: (Dipyrone)
- 2) Antithyroid \rightarrow thiouracil
- 3) Antibacterial \rightarrow chloramphenicol and sulphonamide
- 4) Antiepileptic → Trimethadione
- 5) Antineoplastic drugs (Cytotoxic drugs)
- 6) Gold
- The early manifestation of agranulocytosis is sore throat

Treatment:

- 1) Stop the cause
- 2) Blood transfusion
- 3) Vit. B_{12} and folic acid, vit.C
- 4) Haemopoietic growth factors
- 5) Antimicrobial for infections

Met-hemoglobinaemia

It is the conversion of Fe⁺⁺ of haemoglobin into Fe⁺⁺⁺

<u>Causes :</u>

- 1. Phenacetine
- 2. Nitrite
- 3. Sulphonamides
- 4. Primaquine

Treatment by:

- 1. Methylene blue
- 2. Vit. C "ascorbic acid"

Hematopoietic growth factors

Developed using recombinant DNA technique and include:

- 1. <u>Erythropoietin:</u> produced primarily by renal cortex, used mainly in treatment of anemia due to chronic renal failure. But can be used also in AIDS and in anemia of cancer therapy.
- 2. <u>Thrombopoietin</u> is a cytokine that increases platelet count when combined with other growth factors.
- 3. <u>Granulocyte / marcrophage colony- stimulating factor (GM-CSF):</u> used to stimulate myelopoiesis in AIDS, aplastic anemia and cancer chemotherapy.
- 4. <u>Granulocyte colony- stimulating factor (G-CSF)</u> is used to treat severe neutropenia following bone marrow transplantation or cancer chemotherapy.
- 5. <u>Interleukins</u> (IL 1, 3, 5, 6, 9, 11) act synergistically with stem cell factor (SCF), GM-CSF, G-CSF and erythropoietin.