

Example: What is the number of electrons (e), neutrons (n) and protons (p) in the zinc ion $\binom{65}{30} Zn^{2+}$? Answer:

Naming compounds:

- The elements inside the periodic table are organized in groups (column), where each group has common characteristics.
- One of these common characteristics is the charge (oxidation number), as the whole group tends to lose or gain certain number of electrons and form ion.

Element	Name	ion	Туре	Name
Li	Lithium	Lin	Cation	Lithiumion
Na	Sodium	Na ¹⁺	Cation	Sodium ion
Mg	Magnesium	Mg ²⁺	Cation	Magnesium ion
Ca	Calcium	Ca2+	Cation	Calciumion
Al	Aluminum	A13+	Cation	Aluminumion
к	Potassium	K^{1*}	Cation	Potassium ion
CI	Chlorine	C11-	Anion	Chloride
Br	Bromine	Br1-	Anion	Bromide
s	Sulfur	S2-	Anion	Sulfide
ο	Oxygen	O ²⁻	Anion	Oxide
N	Nitrogen	N ³⁻	Anion	Nitride
Р	phosphors	P3-	Anion	Phosphide
с	Carbon	C4-	Anion	Carbide
Si	Silicon	Si ⁴⁻	Anion	Silicide

Rules for naming compounds:

- Ionic compounds (compounds contain cations and anions)
 - The cation is named first and the anion is named second
 - Be sure the net charge is ZERO

- P.S. For lonic compounds that contain transition metals cations (more than one possible oxidation state), write the oxidation state between two bracket.

Example: Write the names for the following molecules: AlCl₃ $\mathsf{Na}_2\mathsf{S},\mathsf{K}_2\mathsf{O},\mathsf{MgH}_2,\mathsf{FeO},\mathsf{Fe}_2\mathsf{O}_3,\mathsf{CaCO}_3,\mathsf{AIPO}_4,\mathsf{Zn}(\mathsf{OH})_2,\mathsf{KMnO}_4,\mathsf{Cu}\overset{\circ}{\mathsf{SO}}_4,$ AgNO₃.

Answer:

Compound	Name	Compound	Name
AICl ₃	Aluminum Chlor ide	Na ₂ S	Sodium Sulf <i>ide</i>
K20	Potassium Ox ide	MgH_2	Magnesium Hydr ide
FeO	Iron (II) Oxide	Fe_2O_3	Iron (III) Oxide
CaCO ₃	Calcium Carbonate	AIPO ₄	Aluminum Phosphate
$Zn(OH)_2$	Zinc Hydroxide	KMnO ₄	Potassium Permanganate
CuSO ₄	Copper (II) Sulfate	AgNO ₃	Silver Nitrate

Example: Write the chemical formula for Calcium sulfate, Aluminum oxide, Iron(II) nitrate. Answer: Calcium sulfate Using the above mentioned method: 1- Calcium is Ca^{2+} , and sulfate is (SO_4^{-2-}) 2- Write them and the charge underneath them (SO₄) Ca <mark>2+</mark> Ca (SO₄) 3- Remove the charge 2 Ca 2 (SO₄) 4- Exchange the numbers (SO₄) 5- Divide both numbers by 2: Ca 6- Write the formula: Ca₁ (SO₄)₁ or CaSO₄ 12 2

How to write the formula:

- 1- Identify the symbol for both cation and anion.
- 2- Write them and the charge underneath them.
- 3- Remove the charge (+ or -), and leave the number.
- 4- Exchange the numbers

2 2

5- Make the numbers as simple as possible (exact number and no fractions).

6- Write the formula using the final numbers from step 5.

11

Naming Covalent compounds

Covalent compounds contain no charge and they are formed from nonmetals located at the right hand side of the periodic table. *The number of the atoms must be written* before the name of the element *using the following prefix* (Drop a prefix is if the *mono* is to appear at the beginning of the name).

Number of atoms	Prefix	Number of atoms	Prefix
one	Mono-	Two	Di-
Three	Tri-	Four	Tetra-
Five	Penta-	Six	Hexa-

Cor	ompound Na	me	Compound		Name	
со	0 Carbon mono	cide	N ₂ O ₄	Dinitroger	n tetra oxide	
NO	D Nitrogen mon	oxide	SO ₂	Sulfur di o	xide	
PCI	. Phosphorus p	entachloride	HBr	Hydrogen	monochloride	
t ample: Wri	rite the Chemic /drogen monox	cal form tide, pho	ula for: (osphorou	Carbor s trich	n dioxide nloride,	e, sulf nitrog
ample: Write oxide, dihyo oxide.	rite the Chemic vdrogen monox	cal form tide, pho	ula for: (osphorou	Carbor s tricl	n dioxide nloride,	e, suli nitrog
tample: Wri oxide, dihyo oxide. Iswer:	rite the Chemic ydrogen monox	cal form tide, pho Formula	ula for: (osphorou Name	Carbor s trich	n dioxide nloride, Formula	e, sul: nitrog
cample: Write oxide, dihye oxide. Iswer:	rite the Chemic ydrogen monox me rbon dioxide	cal form tide, pho	ula for: (osphorou Name sulfur trioxide	Carbor s trich	n dioxide nloride, Formula S03	e, sul: nitrog
ample: Wri oxide, dihy oxide. Iswer:	rite the Chemic ydrogen monox me rhon dioxide	Formula	ula for: (osphorou Name sulfur trioxida dihydrogen m	Carbor s trich	Formula SO ₃	e, sul: nitrog

