
 

 

           CHAPTER 20 

 
 

The Second Law of Thermodynamics 
 
 
 
 
1* · Where does the energy come from in an internal-combustion engine? In a steam engine? 
 Internal combustion engine: From the heat of combustion (see Problems 19-106 to 19-109). 
 Steam engine: From the burning of fuel to evaporate water and to raise the temperature and pressure of the  
 steam. 
 
2 · How does friction in an engine affect its efficiency? 
 Friction reduces the efficiency of the engine.   
 
3 · John is house-sitting for a friend who keeps delicate plants in her kitchen. She warns John not to let the room get 

too warm or the plants will wilt, but John forgets and leaves the oven on all day after his brownies are baked. As the 
plants begin to droop, John turns off the oven and opens the refrigerator door, intending to use the refrigerator to cool 
the kitchen. Explain why this doesn't work. 

 Since a refrigerator exhausts more heat to the room than it extracts from the interior of the refrigerator, the  
 temperature of the room will increase rather than decrease. 
 
4 · Why do power-plant designers try to increase the temperature of the steam fed to engines as much as possible?  
 Increasing the temperature of the steam increases the Carnot efficiency, and generally increases the efficiency of 
 any heat engine. 
 
5* · An engine with 20% efficiency does 100 J of work in each cycle. (a) How much heat is absorbed in each cycle? 

(b) How much heat is rejected in each cycle? 
 (a) From Equ. 20-2, Qh = W/ε  
 (b) Qc = Qh(1 − ε ) 

Qh = 100/0.2 J = 500 J 

Qc = 500 × 0.8 J = 400 J 
 
 
6 · An engine absorbs 400 J of heat and does 120 J of work in each cycle. (a) What is its efficiency? (b) How much 

heat is rejected in each cycle? 
 (a) ε  = W/Qh 
 (b) Qc = Qh(1 − ε ) 

ε  = 120/400 = 0.3 = 30% 

Qc = 400 × 0.7 J = 280 J 
 
 
 
7 · An engine absorbs 100 J and rejects 60 J in each cycle. (a) What is its efficiency? (b) If each cycle takes  
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 0.5 s, find the power output of this engine in watts. 
 (a) Use Equ. 20-2 
 (b) P = W/∆t = ε  Qh/∆t 

ε  = 1 − 60/100 = 0.4 = 40% 
P = 0.4 × 100/0.5 W = 80 W 

 
 
8 · A refrigerator absorbs 5 kJ of energy from a cold reservoir and rejects 8 kJ to a hot reservoir. (a) Find the 

coefficient of performance of the refrigerator. (b) The refrigerator is reversible and is run backward as a heat engine 
between the same two reservoirs. What is its efficiency? 

 (a) W = Qh - Qc; COP = Qc/W 
 (b) ε  = W/Qh 

W = 3 kJ; COP = 5/3 = 1.67 
ε  = 3/8 = 0.375 = 37.5% 

 
 
9* ·· An engine operates with 1 mol of an ideal gas for which RC 2

3
v  =  and RC 2

5
p  =  as its working substance. The 

cycle begins at P1 = 1 atm and V1 = 24.6 L. The gas is heated at constant volume to P2 = 2 atm. It then expands at 
constant pressure until V2 = 49.2 L. During these two steps, heat is absorbed by the gas. The gas is then cooled at 
constant volume until its pressure is again 1 atm. It is then compressed at constant pressure to its original state. During 
the last two steps, heat is rejected by the gas. All the steps are quasi-static and reversible. (a) Show this cycle on a PV 
diagram. Find the work done, the heat added, and the change in the internal energy of the gas for each step of the 
cycle. (b) Find the efficiency of the cycle. 
(a) The cycle is shown on the right. Here, the pressure P 
is in atm and the volume V is in L. To determine the heat 
added during each step shall first find the temperatures at 
points 1, 2, 3, and 4. 
  T1 = 24.6 × 273/22.4 K = 300 K 
  T2 = 2T1 = 600 K 
  T3 = 2T2 = 1200 K 
  T4 = 2T1 = 600 K 
  

  W1-2 = P∆V1-2; Q1-2 = ∆U12 = Cv∆T1-2 
  W2-3 = P∆V2-3; Q2-3 = Cp∆T2-3 
 
   
  W3-4 = P∆V3-4; Q3-4 = Cv∆T3-4 
  W4-1 = P∆V4-1; Q4-1 = Cp∆T4-1 
  
 (b) ε  = W/Qin 

 
W1-2 = 0; Q1-2 = 1.5 × 8.314 × 300 J = 3.74 kJ = ∆U1-2 

W2-3 = 2 × 24.6 atm.L = 4.97 kJ;  
Q2-3 = 2.5 × 8.314 × 600 J = 12.47 kJ;  

∆U2-3 = (12.47 − 4.97) kJ = 7.5 kJ 
W3-4 = 0; Q34 = −1.5 × 8.314 × 600 J = −7.48 kJ = ∆U3-4 

W4-1 = −24.6 atm.L = -2.48 kJ; Q4-1 = −6.24 kJ; 

∆U4-1 = −3.76 kJ 
W = 2.48 kJ; Qin = 16.21 kJ. ε  = 0.153 = 15.3% 

 
 
10 ·· An engine using 1 mol of a diatomic ideal gas performs a cycle consisting of three steps: (1) an adiabatic  
 expansion from an initial pressure of 2.64 atm and an initial volume of 10 L to a pressure of 1 atm and a volume 
 of 20 L, (2) a compression at constant pressure to its original volume of 10 L, and (3) heating at constant volume 
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 to its original pressure of 2.64 atm. Find the efficiency of this cycle. 
 The first process is adiabatic.  
 Second step: Q2 = Cp∆T2 = 3.5P∆V2 
 Third step: Q3 = Cv∆T3 = 2.5V3∆P3 
 For cycle, ∆U = 0, so W = Q1 + Q2 + Q3 
 ε  = W/Qin 

Q1 = 0 

Q2 = −35 atm.L 

Q3 = 25 × 1.64 atm.L = 41 atm.L 

W = 6 atm.L 
ε   = 6/41 = 0.146 = 14.6% 

 
 
11 ·· An engine using 1 mol of an ideal gas initially at V1 = 24.6 L and T = 400 K performs a cycle consisting of four 

steps: (1) an isothermal expansion at T = 400 K to twice its initial volume, (2) cooling at constant volume to T = 300 K, 
(3) an isothermal compression to its original volume, and (4) heating at constant volume to its original temperature of 
400 K. Assume that Cv = 21 J/K. Sketch the cycle on a PV diagram and find its efficiency. 
1. The cycle is shown in the figure. Here P is in atm and V is in L. 
2. From the data, T1 = T2 = 400 K, T3 = T4 = 300 K, V1 = V4 = 24.6 
L, and V2 = V3 = 49.2 L. 
3. We next determine the work done and the heat absorbed by the 
gas during each of the four steps. 

 
  
    Step 1-2: W1-2 = nRT1 ln(V2/V1) = Q1-2  
    Step 2-3: W2-3 = P∆V; Q23 = Cv∆T 
    Step 3-4: W3-4 = nRT3 ln(V4/V3) = Q3-4 
    Step 4-1: W4-1 = P∆V; Q41 = Cv∆T 
    Find W and Qin 
    Determine ε  = W/Qin 

W1-2 = 8.314 × 400 × ln(2) J = 2.305 kJ = Q1-2 
W2-3 = 0; Q2-3 = −21 × 100 J = −2.1 kJ 
W3-4 = 8.314 × 300 × ln(0.5) J = −1.729 kJ = Q3-4 

W4-1 = 0; Q4-1 = 21 × 100 J = 2.1 kJ 
W = (2.305 − 1.729) kJ = 0.576 kJ; Qin = 4.405 kJ 
ε  = 0.576/4.405 = 0.131 = 13.1% 

 
 
12 ·· One mole of an ideal monatomic gas at an initial volume V1 = 25 L follows the cycle shown in Figure 20-11. All the 

processes are quasi-static. Find (a) the temperature of each state of the cycle, (b) the heat flow for each part of the 
cycle, and (c) the efficiency of the cycle. 

 (a) Use PV = nRT 
 (b) Q1-2 = Cv∆T 
  Q2-3 = W2-3 = nRT2 ln(V3/V2) 
  Q3-1 = Cp∆T 
 (c) W = ΣQ; Qin = Q1-2 + Q2-3; ε  = W/Qin 

T1 = 100 × 25/8.314 K = 300.7 K; T2 = T3 = 601.4 K 
Q1-2 = 1.5 × 8.314 × 300.7 J = 3.75 kJ 
Q2-3 = 8.314 × 601.4 × ln(2) J = 3.466 kJ 
Q3-1 = −2.5 × 8.314 × 300.7 J = −6.25 kJ 
W = 0.966 kJ; Qin = 7.216 kJ; ε  = 0.134 = 13.4% 

 
 
13* ·· An ideal gas (γ = 1.4) follows the cycle shown in Figure 20-12. The temperature of state 1 is 200 K. Find (a) 
 the temperatures of the other three states of the cycle and (b) the efficiency of the cycle. 
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 (a) Use PV = nRT; Ti = T1(PiVi/P1V1) 
 (b) Find W = area enclosed by cycle. 
  Find Qin = Cv∆T1-2 + Cp∆T2-3 
  ε  = W/Qin 

T1 = 200 K, T2 = 600 K, T3 = 1800 K, T4 = 600 K 

W = 400 atm.L 

Qin = (2.5 × 200 + 3.5 × 600) atm.L = 2600 atm.L 
ε   = 400/2600 = 0.154 = 15.4% 

 
 
14 ··· The diesel cycle shown in Figure 20-13 approximates the behavior of a diesel engine. Process ab is an adiabatic 

compression, process bc is an expansion at constant pressure, process cd is an adiabatic expansion, and process da is 
cooling at constant volume. Find the efficiency of this cycle in terms of the volumes Va, Vb, Vc, and Vd.  

 1. Note that ε  = 1 − Qc/Qh. In the adiabatic portions of the cycle, Q = 0. In the portion b→c,  
 Q = Qh = Cp(Tc − Tb). In the portion d→a, Q = Cv(Ta − Td) so Qc = Cv(Td − Ta). Using γ = Cp/Cv,  

ε  = 1 − (Td − Ta)/γ(Tc − Tb). The temperatures are related to the volumes by TaVa
γ−1 = TbVb

γ−1 and TcVc
γ−1 = TdVd

γ−1.   
Also, Va = Vd . Using these relations one can now write the efficiency in terms of volume ratios and the ratio   
Tb/Tc.  One obtains 
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15 ··· In the Stirling cycle shown in Figure 20-14, process ab is an isothermal compression, process bc is heating at 

constant volume, process cd is an isothermal expansion, and process da is cooling at constant volume. Find the 
efficiency of the Stirling cycle in terms of the temperatures Th and Tc and the volumes Va and Vb. 

 No work is done in the constant volume segments of the cycle. The work done in the isothermal segments is  
 given by Wcd = nRTh ln(Vd/Vc) and Wab = nRTc ln(Vb/Va). Since Va = Vd and Vb = Vc, the total work done is  
 W = nR(Th - Tc)ln(Vd/Vc). 
 There is heat input during the segments b→c and c→d. Qbc = ncv(Th − Tc); since ∆Ucd = 0, Qcd = nRTh ln(Vd/Vc).  
 The efficiency is  
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16 ··· The Clausius equation of state is P(V − bn) = nRT, where b is a constant. Show that the efficiency of a Carnot 

cycle is the same for a gas that obeys this equation of state as it is for one that obeys the ideal-gas equation of state, 
PV = nRT. 

 The Carnot cycle’s four segments are: A. An isothermal expansion at T = Th from V1 to V2.  B. An adiabatic  
 expansion from V2 to V3, at the temperature Tc.  C. An isothermal compression from V3 to V4.  D. An adiabatic  
 compression from V4 to V1. 
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and the efficiency is ε  = 1 − Tc/Th, the same as for the ideal gas. 

 
 
17* ·· A certain engine running at 30% efficiency draws 200 J of heat from a hot reservoir. Assume that the refrigerator 

statement of the second law of thermodynamics is false, and show how this engine combined with a perfect 
refrigerator can violate the heat-engine statement of the second law. 

 For this engine, Qh = 200 J, W = 60 J, and Qc = −140 J. A “perfect” refrigerator would transfer 140 J from the  
 cold reservoir to the hot reservoir with no other effects. Running the heat engine connected to the perfect   
 refrigerator would then have the effect of doing 60 J of work while taking 60 J of heat from the hot reservoir  
 without rejecting any heat, in violation of the heat-engine statement of the second law. 
 
18 ·· A certain refrigerator takes in 500 J of heat from a cold reservoir and gives off 800 J to a hot reservoir. Assume 

that the heat-engine statement of the second law of thermodynamics is false, and show how a perfect engine working 
with this refrigerator can violate the refrigerator statement of the second law. 

 To remove 500 J from the cold reservoir and reject 800 J to the hot reservoir, 300 J of work must be done on the 
 system. Assuming that the heat-engine statement is false, one could use the 300 J rejected to the hot reservoir to 
 do 300 J of work. Thus, running the refrigerator connected to the “perfect” heat engine would have the effect of 
 transferring 500 J of heat from the cold to the hot reservoir without any work being done, in violation of the  
 refrigerator statement of the second law. 
 
19 ·· If two adiabatic curves intersect on a PV diagram, a cycle could be completed by an isothermal path between the 

two adiabatic curves shown in Figure 20-15. Show that such a cycle could violate the second law of thermodynamics. 
 The work done by the system is the area enclosed by the cycle, where we assume that we start with the isothermal 
 expansion. It is only in this expansion that heat is extracted from a reservoir. There is no heat transfer in the  
 adiabatic expansion or compression. Thus we would completely convert heat to mechanical energy, without  
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 exhausting any heat to a cold reservoir, in violation of the second law. 
 
20 · A Carnot engine works between two heat reservoirs at temperatures Th = 300 K and Tc = 200 K. (a) What is its 

efficiency? (b) If it absorbs 100 J from the hot reservoir during each cycle, how much work does it do? (c) How much 
heat does it give off during each cycle? (d) What is the COP of this engine when it works as a refrigerator between 
the same two reservoirs? 

 (a) ε = 1 − Tc/Th 
 (b) W = ε Qh 
 (c) Qc = Qh − W 
 (d) COP = Qc/W 

ε  = 1 − 2/3 = 1/3 = 0.333 = 33.3% 
W = 100/3 J = 33.3 J 

Qc = 66.7 J 
COP = 2 

 
 
21* · A refrigerator works between an inside temperature of 0°C and a room temperature of 20°C. (a) What is the 

largest possible coefficient of performance it can have? (b) If the inside of the refrigerator is to be cooled to –10°C, 
what is the largest possible coefficient of performance it can have, assuming the same room temperature of 20°C? 

 (a) Express the COP in terms of Th and Tc. 
  Evaluate COP 
 (b) Evaluate COP 

COP = Qc/W = Qc/ε Qh = (1 − ε )/ ε  = Tc/(Th − Tc) 
COP = 273/20 = 13.7 
COP = 263/30 = 8.77 

 
 
22 · An engine removes 250 J from a reservoir at 300 K and exhausts 200 J to a reservoir at 200 K. (a) What is its 

efficiency? (b) How much more work could be done if the engine were reversible? 
 (a) Use Equ. 20-2 
 (b) Use Equ. 20-6 for ε C; find W = ε Qh 
  Find W for part (a) and ∆W  

ε = 1 − 200/250 = 0.2 = 20% 
ε  = 1 − 200/300 = 0.333; W = 83.3 J 
Wa = 50 J; ∆W = 33.3 J 

 
 
23 ·· A reversible engine working between two reservoirs at temperatures Th and Tc has an efficiency of 30%. Working 

as a heat engine, it gives off 140 J of heat to the cold reservoir. A second engine working between the same two 
reservoirs also gives off 140 J to the cold reservoir. Show that if the second engine has an efficiency greater than 
30%, the two engines working together would violate the heat-engine statement of the second law. 

 Let the first engine be run as a refrigerator. Then it will remove 140 J from the cold reservoir, deliver 200 J to the 
 hot reservoir, and require 60 J of energy to operate. Now take the second engine and run it between the same  
 reservoirs, and let it eject 140 J into the cold reservoir, thus replacing the heat removed by the refrigerator. If ε2, 
 the efficiency of this engine, is greater than 30%, then Qh2, the heat removed from the hot reservoir by this  
 engine, is [140/(1 − ε 2)] J > 200 J, and the work done by this engine is W = ε 2Qh2 > 200 J. The end result of all 
 this is that the second engine can run the refrigerator, replacing the heat taken from the cold reservoir, and do  
 additional mechanical work. The two systems working together then convert heat into mechanical energy without 
 rejecting any heat to a cold reservoir, in violation of the second law. 
 
24 ·· A reversible engine working between two reservoirs at temperatures Th and Tc has an efficiency of 20%. Working 

as a heat engine, it does 100 J of work in each cycle. A second engine working between the same two reservoirs also 
does 100 J of work in each cycle. Show that if the efficiency of the second engine is greater than 20%, the two 
engines working together would violate the refrigerator statement of the second law. 

 If the reversible engine is run as a refrigerator, it will require 100 J of mechanical energy to take 400 J of heat  
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 from the cold reservoir and deliver 500 J to the hot reservoir. Now let the second engine, with ε 2 > 0.2, operate 
 between the same two heat reservoirs and use it to drive the refrigerator. Since ε 2 > 0.2, this engine will remove 
 less than 500 J from the hot reservoir in the process of doing 100 J of work. The net result is then that no net  
 work is done by the two systems working together, but a finite amount of heat is transferred from the cold to the 
 hot reservoir, in violation of the refrigerator statement of the second law. 
 
25* ·· A Carnot engine works between two heat reservoirs as a refrigerator. It does 50 J of work to remove 100 J from 

the cold reservoir and gives off 150 J to the hot reservoir during each cycle. Its coefficient of performance  
 COP = Qc /W = (100 J)/(50 J) = 2. (a) What is the efficiency of the Carnot engine when it works as a heat engine 
 between the same two reservoirs? (b) Show that no other engine working as a refrigerator between the same two 
 reservoirs can have a COP greater than 2. 
 (a) The efficiency is given by ε = W/Qh; ε  = 50/150 = 0.333 = 33.3%. 
 (b) If COP > 2, then 50 J of work will remove more than 100 J of heat from the cold reservoir and put more than 
 150 J of heat into the hot reservoir. So running engine (a) to operate the refrigerator with a COP > 2 will   
 result in the transfer of heat from the cold to the hot reservoir without doing any net mechanical work in violation 
 of the second law. 
 
26 ·· A Carnot engine works between two heat reservoirs at temperatures Th = 300 K and Tc = 200 K. (a) What is its 

efficiency? (b) If it absorbs 100 J from the hot reservoir during each cycle, how much work does it do? (c) How much 
heat does it give off in each cycle? (d) What is the coefficient of performance of this engine when it works as a 
refrigerator between these two reservoirs? 

 (a) ε = 1 − Tc/Th 
 (b) W = ε Qh 
 (c) Qc = Qh − W 
 (d) COP = Qc/W 

ε  = 1 − 77/300 = 0.743 = 74.3% 
W = 100 × 0.743 J = 74.3J 

Qc = 25.7 J 
COP = 0.345 

 
27 ·· In the cycle shown in Figure 20-16, 1 mol of an ideal gas (γ = 1.4) is initially at a pressure of 1 atm and a 

temperature of 0°C. The gas is heated at constant volume to t2 = 150°C and is then expanded adiabatically until its 
pressure is again 1 atm. It is then compressed at constant pressure back to its original state. Find (a) the temperature 
t3 after the adiabatic expansion, (b) the heat entering or leaving the system during each process, (c) the efficiency of 
this cycle, and (d) the efficiency of a Carnot cycle operating between the temperature extremes of this cycle. 

 (a) 1. Determine P2. 
  2. Determine V3 = V1(P2/P1)1/γ. Note that  
      V1 = V/mol at STP = 22.4 L. 
  3. Find T3 = T1(V3/V1) 
 (b) Q1-2 = cv∆T 
  2→3 is an adiabatic process 
  Q3-1 = cp∆T 
 (c) W = ΣQ 
  ε = W/Q1-2 
 (d) ε Carnot = 1 − Tc/Th 

P2 = 423/273 atm = 1.55 atm 
V3 = 22.4(1.55)1/1.4 = 30.6 L. 
 
T3 = 373 K; t3 = 100oC 
Q1-2 = 2.5 × 8.314 × 150 J = 3.12 kJ 
Q2-3 = 0 
Q3-1 = −3.5 × 8.314 × 100 = −2.91 kJ 
W = 0.21 kJ 
ε = 0.21/3.12 = 0.0673 = 6.73% 
ε Carnot = 1 − T1/T2 = 1 − 273/423 = 0.355 = 35.5% 

 
 
28 ·· A steam engine takes in superheated steam at 270°C and discharges condensed steam from its cylinder at 50°C. 
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Its efficiency is 30%. (a) How does this efficiency compare with the maximum possible efficiency for these 
temperatures? (b) If the useful power output of the engine is 200 kW, how much heat does the engine discharge to its 
surroundings in 1 h? 

 (a) ε max = 1 − Tc/Th 
 (b) Qc = (1 − ε)Qh; Qh = W/ε  = Pt/ε  

ε max = 1 − 323/534 = 40.5% 
Qh = 7.2 × 108/0.3 J = 2.4 × 109 J; Qc = 1.68 GJ 

 
 
29* · A heat pump delivers 20 kW to heat a house. The outside temperature is –10°C and the inside temperature of the 

hot-air supply for the heating fan is 40°C. (a) What is the coeffic ient of performance of a Carnot heat pump operating 
between these temperatures? (b) What must be the minimum power of the engine needed to run the heat pump? (c) If 
the COP of the heat pump is 60% of the efficiency of an ideal pump, what must the minimum power of the engine be? 

 (a) COP = Tc/∆T (see Problem 21) 
 (b) Use Equ. 20-10; P = W/t 
 (c) P′ = P/0.6 

COP = 263/50 = 5.26 
P = [20/(1 + 5.26)] kW = 3.19 kW 
P′ = 3.19/0.6 kW = 5.32 kW 

 
 
 
30 · Rework Problem 29 for an outside temperature of –20°C. 
 Follow the procedure of Problem 29 with Tc = 253 K, ∆T = 60 K. One obtains (a) COP = 4.22; (b) P = 3.83 kW;  
 (c) P′ = 6.39 kW. 
 
31 · A refrigerator is rated at 370 W. (a) What is the maximum amount of heat it can remove in 1 min if the inside 

temperature of the refrigerator is 0°C and it exhausts into a room at 20°C? (b) If the COP of the refrigerator is 70% 
of that of an ideal pump, how much heat can it remove in 1 min? 

 (a) Find COP and Qc = (COP) × W = (COP) × Pt 
  
 (b) Qc′ = 0.7Qc 

COP = 273/20 = 13.65;  
Qc = 13.65 × 370 × 60 J = 303 kJ 
Qc′  = 212 kJ 

 
 
32 · Rework Problem 31 for a room temperature of 35°C. 
 Follow the same procedure as in Problem 31, with COP = 273/35 = 7.8. One obtains (a) Qc = 173 kJ;  
 (b) Qc′  = 121 kJ. 
 
33* ·· On a humid day, water vapor condenses on a cold surface. During condensation, the entropy of the water 
 (a) increases. 
 (b) remains constant. 
 (c) decreases. 
 (d) may decrease or remain unchanged. 
 (c) 
 
34 · What is the change in entropy of 1 mol of water at 0°C that freezes? 
 ∆S = ∆Q/T ∆S = −(18 × 333.5/273) J/K = -22 J/K 
 
 
35 · Two moles of an ideal gas at T = 400 K expand quasi-statically and isothermally from an initial volume of 40 L to a 

final volume of 80 L. (a) What is the entropy change of the gas? (b) What is the entropy change of the universe for 
this process? 
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 (a) ∆S = ∆Q/T = nR ln(V2/V1) 
 (b) The process is reversible. 

∆S = 2 × 8.314 × ln(2) J/K = 11.5 J/K 

∆S of universe = 0; (∆S of outside = −11.5 J/K) 
 
 
36 · The gas in Problem 35 is taken from the same initial state (T = 400 K, V1 = 40 L) to the same final state (T = 400 

K, V2 = 80 L) by a process that is not quasi-static. (a) What is the entropy change of the gas? (b) What can be said 
about the entropy change of the universe? 

 Since the entropy is a state function, the change in entropy of the gas is as in Problem 35, i.e., 11.5 J/K. In the  
 non-reversible process, the entropy of the universe must increase. 
 
37* · What is the change in entropy of 1.0 kg of water when it changes to steam at 100°C and a pressure of 1 atm? 
 ∆S = ∆Q/T ∆S = 2257/373 kJ/K = 6.05 kJ/K 
 
 
38 · Jay approached his guru in a depressed mood. "I want to change the world, but I feel helpless," he said. The guru 

turned and pushed a 5-kg rock over a ledge. It hit the ground 6 m below and came to rest. "There," said the guru. "I 
have changed the world." If the rock, the ground, and the atmosphere are all initially at 300 K, calculate the entropy 
change of the universe. 

 ∆S = ∆Q/T; ∆Q = mgh ∆S = 5 × 9.81 × 6/300 J/K = 0.981 J/K 
 
 
39 · What is the change in entropy of 1.0 kg of ice when it changes to water at 0°C and a pressure of 1 atm? 
 ∆S = ∆Q/T ∆S = 333.5/273 kJ/K = 1.22 kJ/K 
 
 
40 ·· A system absorbs 200 J of heat reversibly from a reservoir at 300 K and gives off 100 J reversibly to a reservoir 

at 200 K as it moves from state A to state B. During this process, the system does 50 J of work. (a) What is the 
change in the internal energy of the system? (b) What is the change in entropy of the system? (c) What is the change 
in entropy of the universe? (d) If the system goes from state A to state B by a nonreversible process, how would your 
answers for parts (a), (b), and (c) differ? 

 (a) ∆U = ∆Q − W 
 (b) ∆S = ∆Sh − ∆Sc = Qh/Th − Qc/Tc 
 (c) The process is reversible. 
 (d) Ssystem is a state function; the process is 
   irreversible. 

∆Q = 100 J; W = 50 J; ∆U = 50 J 

∆S = (200/300 − 100/200) J/K = 0.167 J/K 

∆Su = 0 
(a) and (b) are the same as before. ∆Su > 0 

 
 
41* ·· A system absorbs 300 J from a reservoir at 300 K and 200 J from a reservoir at 400 K. It then returns to its 

original state, doing 100 J of work and rejecting 400 J of heat to a reservoir at a temperature T. (a) What is the entropy 
change of the system for the complete cycle? (b) If the cycle is reversible, what is the temperature T? 

 (a) S is a state function of the system. 
 (b) ∆S = Q1/T1 + Q2/T2 + Q3/T3 = 0; solve for T3 

∆S for complete cycle = 0. 
1 J/K + 0.5 J/K − (400 J)/T3 = 0; T3 = T = 267 K 

 
 
42 ·· Two moles of an ideal gas originally at T = 400 K and V = 40 L undergo a free expansion to twice their initial 

volume. What is (a) the entropy change of the gas, and (b) the entropy change of the universe? 
 (a) See Problem 35; ∆Sgas = 11.5 J/K; (b) It is an irreversible process; ∆Su > 0. Since no heat is exchanged,  
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 ∆Su = 11.5 J/K 
 
43 ·· A 200-kg block of ice at 0°C is placed in a large lake. The temperature of the lake is just slightly higher than 0°C, 

and the ice melts. (a) What is the entropy change of the ice? (b) What is the entropy change of the lake? (c) What is 
the entropy change of the universe (the ice plus the lake)? 

 (a) ∆Sice = mLf/Tf 
 (b) ∆Slake = −∆Sice 

∆Sice = 200 × 333.5/273 kJ/K = 244.3 kJ/K 

∆Slake = −244.3 kJ/K 
 
 (c) ∆Su = 0. This is only true under the assumption that both the lake and ice are at exactly the same temperature  
 initially. If that were so, then the ice would not melt. Since the temperature of the lake is slightly greater than  
 that of the ice, the magnitude of the entropy change of the lake is less than 244.3 kJ/K and the entropy   
 change of the universe is greater than zero. The melting of the ice is an irreversible process. 
 
44 ·· A 100-g piece of ice at 0°C is placed in an insulated container with 100 g of water at 100°C. (a) When thermal 

equilibrium is established, what is the final temperature of the water? Ignore the heat capacity of the container. (b) 
Find the entropy change of the universe for this process. 

 (a) Use the calorimetry equation. 
  Solve for t 
 (b) ∆Sice = mLf/Tf + mcp ln(Tf/Ti) 
 
  ∆Swater = mcp ln(Tf/Ti) 
  ∆Su = ∆Sice + ∆Swater 

100(100 − t) = (100 g)(79.7 cal/g) + 100(t − 0) 
t = 10.15oC 

∆Sice = [100 × 333.5/273 + 100 × 4.184 × ln(283.3/273.15)] 
J/K;  ∆Sice = 137 J/K 

∆Swater = 100 × 4.184 ln(283/373) = −116 J/K 

∆Su = 21 J/K; ∆Su > 0, process is irreversible. 
 
 
45* ·· A 1-kg block of copper at 100°C is placed in a calorimeter of negligible heat capacity containing 4 L of water at 

0°C. Find the entropy change of (a) the copper block, (b) the water, and (c) the universe. 
(a) Use the calorimetry equation to find the final  

temperature. 
  Find ∆SCu = mCucCu ln(Tf/Ti) 
 (b) ∆Sw = mwcw ln(Tf/Ti) 
 (c) ∆Su = ∆SCu + ∆Sw 

1 × 0.386(100 − t) = 4 × 4.184(t − 0); t = 2.26oC  
= 275.4 K 

∆SCu = 0.386 ln(275.4/373) kJ/K = −117 J/K 

∆Sw = 4 × 4.184 ln(275.4/273.15) kJ/K = 137 J/K 

∆Su = 20 J/K; ∆Su > 0, the process is irreversible. 
 
 
46 ·· If a 2-kg piece of lead at 100°C is dropped into a lake at 10°C, find the entropy change of the universe. 
 1. Find the heat lost by the lead 
 2. Find ∆Sw; Tw remains at 283 K 
 3. Find ∆SPb = mPbcPb ln(Tf/Ti) 
 4. Find ∆Su = ∆Sw + ∆SPb 

∆Q = 2 × 0.128 × 90 kJ = 23 kJ 

∆Sw = 23/283 kJ/K = 81.4 J/K 

∆SPb = 2 × 0.128 ln(283/373) kJ/K = −70.7 J/K 

∆Su = 10.7 J/K 
 
 
47 ·· A 1500-kg car traveling at 100 km/h crashes into a concrete wall. If the temperature of the air is 20°C, calculate 

the entropy change of the universe. 
 ∆Su = Q/T = 1/2mv2/T ∆Su = 1/2 × 1500 × 27.82/293 J/K = 1975 J/K 
 
 
48 ·· Find the net change in entropy of the universe when 10 g of steam at 100°C and a pressure of 1 atm are 
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introduced into a calorimeter of negligible heat capacity containing 150 g of water and 150 g of ice at 0°C. 
 1. Find the heat required to melt 150 g of ice. 
 2. Find the heat released as 10 g of steam at 100oC 
      condense to 0oC. Since Q2 < Q1, Tf = 273 K. 
 3. Find m′, the mass of ice that melts. 
 4. Find ∆Sice = Q2/273 
 5. Find ∆Ssteam = −msLv/373 + mscw ln(273/373) 
 6. ∆Su = ∆Sice + ∆Ssteam 

Q1 = 150 × 333.5 J = 50 kJ 
Q2 = 10 × 2257 + 10 × 4.184 × 100 = 26.75 kJ 
 
m′ = 26.75/333.5 kg = 0.0802 kg = 80.2 g 

∆Sice = 98 J/K 

∆Ssteam = −22750/373 + 41.84 ln(0.732) = −74 J/K 

∆Su = 24 J/K 
 
 
49* ·· If 500 J of heat is conducted from a reservoir at 400 K to one at 300 K, (a) what is the change in entropy of the 

universe, and (b) how much of the 500 J of heat conducted could have been converted into work using a cold reservoir 
at 300 K? 

 (a) ∆Su = ∆Sh + ∆Sc = −Q/Th + Q/Tc 
 (b) ε max = 1 − Tc/Th; W = ε Qh 

∆Su = 500(1/300 − 1/400) = 0.417 J/K 
ε max = 0.25; W = 0.25 × 500 = 125 J 

 
 
50 ·· One mole of an ideal gas first undergoes a free expansion from V1 = 12.3 L and T1 = 300 K to V2 = 24.6 L and T2 

= 300 K. It is then compressed isothermally and quasi-statically back to its original state. (a) What is the entropy 
change of the universe for the complete cycle? (b) How much work is wasted in this cycle? (c) Show that the work 
wasted is T ∆Su. 

 (a)  Although in the adiabatic free expansion no heat is lost by the gas, the process is irreversible and the entropy 
 of the gas increases. In the isothermal reversible process that returns the gas to its original state, the gas releases 
 heat to the surroundings. However, since the process is reversible, the entropy change of the universe is zero.  
 Consequently, the net entropy change is the negative of that of the gas in the isothermal compression. 
 ∆Sgas = nR ln(Vf/Vi) = − ∆Su; ∆Su = nR ln(Vi/Vf)   ∆Su = 8.314 ln(2) = 5.76 J/K 
 (b)  If the initial expansion had been isothermal and reversible, no work would have been done in the cycle. 
 (c) The amount of energy that is dissipated is T∆Su = 1.73 kJ. 
 
51 · In a reversible adiabatic process, 
 (a) the internal energy of the system remains constant. 
 (b) no work is done by the system. 
 (c) the entropy of the system remains constant. 
 (d) the temperature of the system remains constant. 
 (c) 
 
52 ·· True or false:  
 (a) Work can never be converted completely into heat. 
 (b) Heat can never be converted completely into work. 
 (c) All heat engines have the same efficiency. 
 (d) It is impossible to transfer a given quantity of heat from a cold reservoir to a hot reservoir. 
 (e) The coefficient of performance of a refrigerator cannot be greater than 1. 
 (f) All Carnot engines are reversible. 
 (g) The entropy of a system can never decrease. 
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 (h) The entropy of the universe can never decrease. 
 (a)  False.  (b) True.  (c) False.  (d) False.  (e) False.  (f) True.  (g) False.  (h) True. 
 
53* ·· An ideal gas is taken reversibly from an initial state Pi, Vi, Ti to the final state Pf , Vf, Tf. Two possible paths are (A) 

an isothermal expansion followed by an adiabatic compression, and (B) an adiabatic compression followed by an 
isothermal expansion. For these two paths, 

 (a) ∆UA > ∆UB. 
 (b) ∆SA > ∆SB. 
 (c) ∆SA < ∆SB. 
 (d) none of the above is correct.  
 (d) 
 
54 ·· Figure 20-17 shows a thermodynamic cycle on an ST diagram. Identify this cycle and sketch it on a PV diagram. 

The processes A-B and C-D are adiabatic; the processes B-C and D-A are 
isothermal. The cycle is therefore the Carnot cycle, shown in the adjacent PV 
diagram. 

 
 
 
55 ·· Figure 20-18 shows a thermodynamic cycle on an SV diagram. Identify the type of engine represented by this 

diagram. 
 Note that A-B is an adiabatic expansion. B-C is a constant volume process in which the entropy decreases;  
 therefore heat is released. C-D is an adiabatic compression. D-A is a constant volume process that returns the gas 
 to its original state. The cycle is that of the Otto engine (see Figure 20-3). 
 
56 ·· Sketch an ST diagram of the Otto cycle.  

Refer to Figure 20-3. Here a-b is an adiabatic compression,  so S is constant and 
T increases. Between b and c, heat is added to the system and both S and T 
increase. c-d is again isentropic. d-a releases heat and both S and T decrease. 
The cycle on an ST diagram is sketched in the adjacent figure. 

 
 
 
57* ·· Sketch an SV diagram of the Carnot cycle. 
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Referring to Figure 20-8, process 1-2 is an isothermal expansion. In this process 
heat is added to the system and the entropy and volume increase. Process 2-3 is 
adiabatic, so S is constant as V increases. Process 3-4 is an isothermal 
compression in which S decreases and V also decreases. Finally, process 4-1 is 
adiabatic, i.e., isentropic, and S is constant while V decreases. The cycle is shown 
in the adjacent SV diagram. 

 
 
 
58 ·· Sketch an SV diagram of the Otto cycle. 
 The SV diagram of the Otto cycle is shown in Figure 20-18. (see Problem 55) 
 
59 ·· Figure 20-19 shows a thermodynamic cycle on an SP diagram. Make a sketch of this cycle on a PV diagram. 

Process A-B is at constant entropy, i.e., an adiabatic process in which the 
pressure increases. Process B-C is one in which P is constant and S decreases; 
heat is exhausted from the system and the volume decreases. 
Process C-D is an adiabatic compression. Process D-A returns the system to its 
original state at constant pressure.  The cycle is shown in the adjacent PV 
diagram. 

 
  
60 · An engine with an output of 200 W has an efficiency of 30%. It works at 10 cycles/s. (a) How much work is done 

in each cycle? (b) How much heat is absorbed and how much is given off in each cycle? 
 (a) W/cycle = P∆t 
 (b) Qh = W/ε ; Qc = Qh − W 

W/cycle = 200 × 0.1 J = 20 J  
Qh = 20/0.3 J = 66.7 J; Qc = 46.7 J 

 
 
61* · Which has a greater effect on increasing the efficiency of a Carnot engine, a 5-K increase in the temperature of 

the hot reservoir or a 5-K decrease in the temperature of the cold reservoir? 
 Let ∆T be the change in temperature and  ε = (Th − Tc)/Th be the initial efficiency. If Th is increased by ∆T , ε ′,  
 the new efficiency is ε ′ = (Th + ∆T − Tc)/(Th + ∆T). If Tc is reduced by ∆T, the efficiency is then  
 ε ″ = (Th - Tc + ∆T)/Th. The ratio ε ″/ε ′ = Th/(Th + ∆T) > 1. Therefore, a reduction in the temperature of the cold 
 reservoir by ∆T increases the efficiency more than an equal increase in the temperature of the hot reservoir. 
 
62 · In each cycle, an engine removes 150 J from a reservoir at 100°C and gives off 125 J to a reservoir at 20°C.  

(a) What is the efficiency of this engine? (b) What is the ratio of its efficiency to that of a Carnot engine working 

between the same reservoirs? (This ratio is called the second law efficiency.) 
 (a) ε  = 1 − Qc/Qh 
 (b) ε C = 1 − Tc/Th 

ε  = 1 − 125/150 = 0.167 = 16.7% 
ε C = 1 − 293/373 = 0.214 = 21.4%; ε /ε C = 0.777 

 
 
63 · An engine removes 200 kJ of heat from a hot reservoir at 500 K in each cycle and exhausts heat to a cold 
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reservoir at 200 K. Its efficiency is 85% of a Carnot engine working between the same reservoirs. (a) What is the 
efficiency of this engine? (b) How much work is done in each cycle? (c) How much heat is exhausted in each cycle? 

 (a) ε  = 0.85ε C; ε C = 1 − Tc/Th 
 (b) W = ε Qh 
 (c) Qc = Qh − W 

ε = 0.85(1 − 0.4) = 0.51 = 51% 
W = 0.51 × 200 kJ = 102 kJ 

Qc = 98 kJ 
 
 
64 · To maintain the temperature inside a house at 20°C, the power consumption of the electric baseboard heaters is 30 

kW on a day when the outside temperature is -7°C. At what rate does this house contribute to the increase in the 
entropy of the universe? 

 ∆S/∆t = (∆Q/T)/∆t ∆S/∆t = 30/266 kW/K = 113 W/K 
 
 
65* ·· The system represented in Figure 20-17 (Problem 54) is 1 mol of an ideal monatomic gas. The temperatures at 

points A and B are 300 and 750 K, respectively. What is the thermodynamic efficiency of the cyclic process 
ABCDA? 

 ε = ε C (see Problem 54); ε C = 1 − Tc/Th ε = 1 − 300/750 = 0.6 = 60% 
 
 
66 ·· A sailor is in a tropical ocean on a boat. She has a 2-kg piece of ice at 0°C, and the temperature of the ocean is Th 

= 27°C. Find the maximum work W that can be done using the fusion of ice. 
 ε max = ε C = 1 − Tc/Th; W = ε CQh = ε CmiceLf W = (1 − 273/300) × 2 × 333.5 kJ = 60 kJ 
 
 
67 ·· (a) Which process is more wasteful: (1) a block moving with 500 J of kinetic energy being slowed to rest by 

friction when the temperature of the atmosphere is 300 K or (2) 1 kJ of heat being conducted from a reservoir at 400 
K to one at 300 K? Hint: How much of the 1 kJ of heat could be converted into work in an ideal situation? (b) What is 
the change in entropy of the universe for each process? 

 (a) 1. Process (1): All mechanical energy is lost. 
  2. Process (2): Run a Carnot engine. Then  
      Wrecovered = (1 − Tc/Th)Qh 
 (b) ∆S1 = ∆Q/T;  ∆S2 = ∆Q(1/Tc − 1/Th) 

Energy loss = 500 J 
Wrecovered = 0.25 × 1 kJ = 250 J; (1) is more wasteful of 
mechanical energy. (2) is more wasteful of total energy. 

∆S1 = 1.67 J/K; ∆S2 = 0.833 J/K;  ∆S1 > ∆S2. 
 
 
68 ·· Helium gas (γ = 1.67) is initially at a pressure of 16 atm, a volume of 1 L, and a temperature of 600 K. It is 

expanded isothermally until its volume is 4 L and is then compressed at constant pressure until its volume and 
temperature are such that an adiabatic compression will return the gas to its original state. (a) Sketch this cycle  
on a PV diagram. (b) Find the volume and temperature after the isobaric compression. (c) Find the work done  
during each cycle. (d) Find the effic iency of the cycle. 
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(a) During the isothermal expansion the pressure drops from 16 atm to 4 atm 
as the volume increases from 1 L to 4 L.  The volume at point 3 is determined 
from the pressure ratio P1/P3 and the equation for an adiabatic process, PVγ = 
constant; V3 = V1(P1/P3)1/γ = 1(4)0.6 L = 2.30 L.  The complete cycle is 
shown on the adjacent PV diagram;  here P is in atm and V in L. 

 
 (b) The volume at point 3 is V3 = 2.30 L (see above). 
  T3 = T1(V1/V3)γ−1            T3 = 600(1/2.3)0.667 = 344 K 

 (c) For process 1-2, W1-2 = nRT1 ln(V2/V1) = P1V1 ln(V2/V1)   W1-2 = 16 ln(4) atm.L = 22.2 atm.L 

  For process 2-3, W2-3 = P2∆V         W2-3 = 4 × (2.3 − 4) atm.L = −6.8 atm.L 

  For process 3-1, W3-1 = −Cv∆T = 1.5nR∆T = −1.5(P1V1 − P3V3) W3-1 = −1.5(16 − 9.2) atm.L = −10.2 atm.L 

 (d) Qin = Q1-2 = 22.2 atm.L; W = W1-2 + W2-3 + W3-1; ε = W/Qin  ε = 5.2/22.2 = 0.234 = 23.4% 
 
69* ·· A heat engine that does the work of blowing up a balloon at a pressure of 1 atm extracts 4 kJ from a hot reservoir 

at 120°C. The volume of the balloon increases by 4 L, and heat is exhausted to a cold reservoir at a temperature Tc. If 
the efficiency of the heat engine is 50% of the efficiency of a Carnot engine working between the same reservoirs, 
find the temperature Tc. 

 1. Find W. 
 2. ε = W/Qh; ε C = 2ε = 1 − Tc/Th 
 3. tc = Tc - 273.15 

W = 4 atm.L = 0.404 kJ 
ε C = 2 × 0.404/4 = 0.202 = 1 − Tc/393; Tc = 313.6 K  
tc = 40.5oC 

 
 
70 ·· Show that the COP of a Carnot refrigerator is related to the efficiency of a Carnot engine by COP =  
 Tc / ( ε CTh). 
 By definition, COP = Qc/W = (Qh − W)/W = [1 − (W/Qh)]/(W/Qh) = (1 − ε C)/ ε C = (Tc/Th)/[1 − (Tc/Th)] = Tc/ε CTh.  
71 ·· A freezer has a temperature TC = –23°C. The air in the kitchen has a temperature Th = +27°C. Since the heat 

insulation is not perfect, some heat flows into the freezer at a rate of 50 W. Find the power of the motor that is needed 
to maintain the temperature in the freezer. 

 COP = Tc/∆T;  P = (dQc/dt)/COP = (dQc/dt) × ∆T/Tc P = 50 × 50/250 = 10 W 
 
 
72  ·· Two moles of a diatomic gas are taken through the cycle ABCA as shown on the PV diagram in Figure  
 20-20. At A the pressure and temperature are 5 atm and 600 K. The volume at B is twice that at A. The segment 
 BC is an adiabatic expansion and the segment CA is an isothermal compression. (a) What is the volume of the 
 gas at A? (b) What are the volume and temperature of the gas at B? (c) What is the temperature of the gas at C? 
 (d) What is the volume of the gas at C? (e) How much work is done by the gas in each of the three segments of 
 the cycle? (f) How much heat is absorbed by the gas in each segment of the cycle? (g) What is the          
 thermodynamic efficiency of this cycle? 
 (a) VA = nRTA/PA VA = 2 × 8.314 × 600/505 L = 19.76 L 
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 (b) VB = 2VA; TB = 2TA 
 (c) TC = TA  
 (d) TB/TC = (VC/VB)γ−1; VC/VB = (TB/TC)1/(γ−1) 
 (e) 1. WA-B = PA∆V = PAVA 
  2. WB-C = −∆UB-C = −ncv∆TB-C 
  3. WC-A = nRT ln(VA/VC) 
 (f) 1. QA-B = ncp∆T 
  2. QB-C = 0; adiabatic process. QC-A = WC-A 
 (g) ε  = W/Qin; W = WA-B + WB-C + WC-A 

VB = 39.52 L; TB = 1200 K 
TC = 600 K 
VC = 39.52 × 22.5 = 224 L 

WA-B = 5 × 19.76 atm.L = 98.8 atm.L = 9.98 kJ 
WB-C = 2 × 2.5 × 8.314 × 600 J = 24.9 kJ 
WC-A = 2 × 8.314 × 600 × ln(19.76/224) J = -24.2 kJ 
QA-B = 2 × 3.5 × 8.314 × 600 = 34.9 kJ 
QB-C = 0;  QC-A = −24.2 kJ 
W = 10.68 kJ, Qin = 34.9 kJ; ε _ = 30.6% 

 
 
73* ·· Two moles of a diatomic gas are carried through the cycle ABCDA shown in the PV diagram in Figure  
 20-21. The segment AB represents an isothermal expansion, the segment BC an adiabatic expansion. The   
 pressure and temperature at A are 5 atm and 600 K. The volume at B is twice that at A. The pressure at D is  
 1atm. (a) What is the pressure at B? (b) What is the temperature at C? (c) Find the work done by the gas in one 
 cycle and the thermodynamic efficiency of this cycle. 
 (a) 1. PB = PA(VA/VB) 
  2. Find VB = nRTB/PB 
 (b) 1. Find VC = VB(PB/PC)1/γ; γ = 1.4 
  2. TC = TB(PCVC/PBVB) 
 (c) 1. WA-B = nRTA ln(VB/VA) 
  2. WB-C = −ncv∆T 
  3. WC-D = PC(VD − VC); WD-A = 0 
  4. W = WA-B +WB-C + WC-D + WD-A 
  5. QD-A = ncv(TA - TD); TD = TA/5 
  6. Qin = QA-B + QD-A; QA-B = WA-B; ε  = W/Qin 

PB = 5/2 atm = 2.5 atm = 252.5 kPa;  
VB = 2 × 8.314 × 600/2.525 × 105 m3 = 39.5 L 
VC = 39.5 × 2.50.714 L = 76 L 
TC = 600(76/98.75) K = 462 K 
WA-B = 2 × 8.314 × 600 × ln(2) J = 6.915 kJ 
WB-C = 2 × 2.5 × 8.314 × 138 J = 5.74 kJ 

WC-D = 1(19.75 − 76) atm.L = -5.68 kJ; WD-A = 0 
W = 6.975 kJ 
QD-A = 2 × 2.5 × 8.314 × 480 J = 20 kJ 
ε  = 6.975/26.915 = 0.259 = 25.9% 

 
 
74 ·· Repeat Problem 72 for a monatomic gas. 
 (a), (b), and (c) are the same as for Problem 72 
 (d) VC = VB(TB/TC)1/(γ−1); γ = 5/3 
 (e) 1. WA-B (see Problem 72) 
  2. WB-C = −ncv∆TB-C 
  3. WC-A = nRTC ln(VA/VC) 
 (f) 1. QA-B = ncp∆T 
  2. QB-C = 0; QC-A = WC-A 
 (g) ε  = W/Qin; W = WA-B + WB-C + WC-A 

VA = 19.76 L; VB = 39.52 L; TB = 1200 K; TC = 600 K 
VC = 39.52 × 21.5 = 111.8 L 
WA-B = 9.98 kJ 
WB-C = 2 × 1.5 × 8.314 × 600 = 14.97 kJ 
WC-A = 2 × 8.314 × 600 × ln(19.76/111.8) J = −17.29 kJ 
QA-B = 2 × 2.5 × 8.314 × 600 J = 24.94 kJ 
QB-C = 0; QC-A = −17.29 kJ 
W = 7.66 kJ; ε  = 7.66/24.94 = 0.307 = 30.7% 

 
 
75 ·· Repeat Problem 73 for a monatomic gas. 
 (a) Same as for Problem 73. 
 (b) 1. Find VC = VB(PB/PC)1/γ; γ = 5/3 
  2. TC = TB(PCVC/PBVB) 

PB = 2.5 atm = 252.5 kPa; VB = 39.52 L 
VC = 39.52 × 2.50.6 L = 68.48 L 
TC = 600(68.48/98.8) K = 416 K 
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 (c) 1. WA-B = nRTA ln(VB/VA) 
  2. WB-C = −ncv∆T 
  3. WC-D = PC(VD − VC); WD-A = 0 
  4. W = WA-B + WB-C + WC-D + WD-A 
  5. QD-A = ncv(TA − TD); TD = TA/5 
  6. Qin = QA-B + QD-A; QA-B = WA-B; ε  = W/Qin 

WA-B = 6.915 kJ (see Problem 73) 
WB-C = 2 × 1.5 × 8.314 × 184 J = 4.59 kJ 

WC-D = 1(19.75 - 68.48) atm.L = −4.92 kJ; WD-A = 0 
W = 6.585 kJ 
QD-A = 2 × 1.5 × 8.314 × 480 J = 11.97 kJ 
ε  = 6.585/18.89 = 0.349 = 34.9% 

 
 
76 ·· Compare the efficiency of the Otto engine and the Carnot engine operating between the same maximum and 

minimum temperatures. 

 The efficiency of the Otto engine is given in Example 20-2: 
T    T
T    T     = 

bc

ad
O

−
−

−1ε , where the subscripts refer to the 

 various points of the cycle as shown in Figure 20-3. 
 Using the relation TVγ−1 = constant for the adiabatic process, we have Tc − Tb = Td(Vd/Vc)γ−1 − Ta(Va/Vb)γ−1. In the 

 Otto cycle, Va = Vd and Vb = Vc; thus, Tc − Tb = (Td − Ta)(Va/Vb)γ−1, and ε O = 1 − (Vb/Va)γ−1 = 1 − Ta/Tb. Note that   
Ta is the lowest temperature of the cycle, but Tb is not the highest temperature. The high temperature is  

 Tc = (Pc/Pb)Tb which is greater than Tb. A Carnot engine operating between the maximum and minimum   
 temperatures of the Otto will have an efficiency ε C = 1 − Ta/Tc  >  1 − Ta/Tb = ε O. 
 
77* ·· Compare the efficiency of the Stirling cycle (see Figure 20-14) and the Carnot engine operating between the same 

maximum and minimum temperatures.  
 The efficiency of the Sterling cycle, ε S, is given in Problem 15. Using Th − Tc = ε CTh, that expression can be  
 recast in the form 
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ε , where Vc and Vd are the volumes indicated in Figure 20-14. Clearly, ε S < ε C. 

 
 
78 ··· Using the equation for the entropy change of an ideal gas when the volume and temperature change and  

TV 1  −γ 0 is a constant, show explicitly that the entropy change is zero for a quasi-static adiabatic expansion  

from state (V1,T1) to state (V2,T2). 
 In general, ∆S = Cv ln(T2/T1) + nR ln(V2/V1). For the adiabatic process, (T2/T1) = (V1/V2)γ−1. So one has 
 ∆S = ln(V2/V1)[nR - Cv(γ − 1)]. But nR = Cp − Cv  and γCv = Cp. The expression in the square brackets is   
 therefore equal to zero, and ∆S = 0. 
 
79 ··· (a) Show that if the refrigerator statement of the second law of thermodynamics were not true, the entropy of the 

universe could decrease. (b) Show that if the heat-engine statement of the second law were not true, the entropy of 
the universe could decrease. (c) An alternative statement of the second law is that the entropy of the universe cannot 
decrease. Have you just proved that this statement is equivalent to the refrigerator and heat-engine statements? 

 (a) Suppose the refrigerator statement of the second law is violated in the sense that heat Qc is taken from the  
 cold reservoir and an equal amount of heat is transferred to the hot reservoir and W = 0. The entropy change of the 
 universe is then ∆Su = Qc/Th − Qc/Tc. Since Th > Tc, ∆Su < 0, i.e., the entropy of the universe would decrease. 
 (b) In this case, heat Qh is taken from the hot reservoir and no heat is rejected to the cold reservoir, i.e., Qc = 0, 
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 then the entropy change of the universe is ∆Su = −Qh/Th + 0 which is negative. Again, the entropy of the universe 
 would decrease. 
 (c) The heat-engine and refrigerator statements of the second law only state that some heat must be rejected to a 
 cold reservoir and some work must be done to transfer heat from the cold to the hot reservoir, but these   
 statements do not specify the minimum amount of heat rejected or work that must be done. The statement  
 ∆Su ≥ 0 is more restrictive. The heat-engine and refrigerator statements in conjunction with the Carnot efficiency 
 are equivalent to ∆Su ≥ 0. 
 
80 ··· Suppose that two heat engines are connected in series, such that the heat exhaust of the first engine is used as the 

heat input of the second engine as shown in Figure 20-22. The efficiencies of the engines are ε 1 and ε 2 respectively. 

Show that the net efficiency of the combination is given by εεεε 211net )  (1 +  = − . 

 Referring to Figure 20-22, ε 1= W1/Qh and ε 2= W2/Qm. The overall efficiency is ε net = (W1 + W2)/Qh  
 = ε 1 + (Qm/Qh) ε 2. Since Qm is the heat rejected by engine 1, Qm/Qh = 1 − ε 1. So ε net = ε 1 + (1 − ε 1) ε 2.  
81* ··· Suppose that each engine in Figure 20-22 is an ideal reversible heat engine. Engine 1 operates between 

temperatures Th and Tm and Engine 2 operates between Tm and Tc, where Th > Tm > Tc. Show that 
 

  
T
T  1 = 

h

c
net −ε  

 This means that two reversible heat engines in series are equivalent to one reversible heat engine operating between 
the hottest and coldest reservoirs. 

 Since the engines are ideal reversible engines, ε 1 = 1 − Tm/Th  and ε 2 = 1 − Tc/Tm. Using the expression derived in  
 Problem 80 one obtains ε net = 1 − Tc/Th.  
82 ··· The cooling compartment of a refrigerator and its contents are at 5°C and have an average heat capacity of  

84 kJ/K. The refrigerator exhausts heat to the room, which is at 25°C. What minimum power will be required by  
the motor that runs the refrigerator if the temperature of the cooling compartment and its contents is to be  
reduced by 1 C° in 1 min? 

 1. Determine the COP = Tc/∆T 
 2. P = W/t = (Qh/t)/(1 + COP); Qh = C∆T = C 

COP = 278/20 = 13.9 
P = 84 × 103/(60 × 14.9) W = 94 W 

 
 
83 ··· An insulated container is separated into two chambers of equal volume by a thin partition. On one side of the 

container there are twelve  131Xe atoms, on the other side there are twelve 132Xe atoms. The partition is then removed. 
Calculate the change in entropy of the system after equilibrium has been established (that is, when the 131Xe and 132Xe 
atoms are evenly distributed throughout the total volume). 

 Removing the partition is equivalent to free expansion; i.e., 131Xe and 132Xe each expand freely into the other  
 volume previously unoccupied by these gases. The change in entropy for each gas is given by Equ. 20-18, where 
 here V2/V1 = 2. We also recall that R = NAk  and n = N/NA, where NA is Avogadro’s number. Thus, nR = Nk . Here  
 N = 12. We obtain ∆S = 2 × 12 × 1.38 × 10−23 ln(2) J/K = 2.3 × 10−22 J/K. 
 


