WBC manual count using hemocytometer

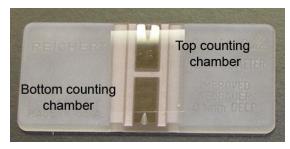
Prepared by

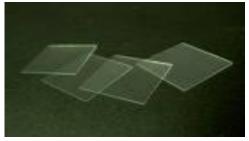
Hadeel Al Sadoun

Objectives

- To accurately count WBC in Chamber.
 - To perform reliable dilution of blood cells
 - To calculate the number of cells/µL

Principle


- Whole blood collected in EDTA is diluted according to the type of cell count obtained.
- The diluted blood suspension is then placed in a chamber and the cell counted
- The count is multiplied by dilution factor and reported as number of cells per microlitter (μL) of whole blood


Material

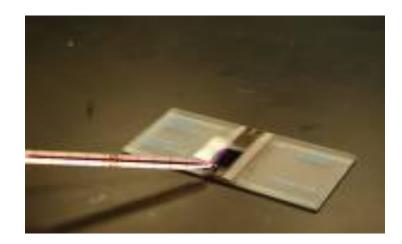
• Hemocytometer with Neubauer grid.

- Cover glass
- Diluents

Microscope.

Methodology

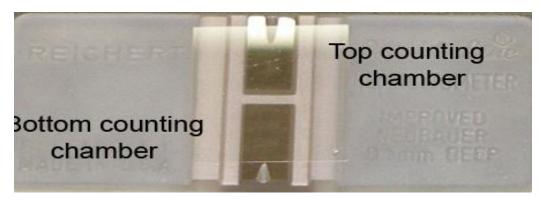
- Put the cover slip or glass slip on the top of grid area in the Chamber (use air tight technique)
- Dilute you sample:
 - 1: 20 for WBC count
 - 1:200 for RBC count and platelets
- Load your sample into the laoding area in the chamber
- Count the cells in the 4 large squares for WBC
- calculate the number of cells counted / μL


Sample dilution

- Dilution of whole blood sample:
 - Diluents:
 - Acetic acid (CH₃COOH)
 - Or : dis. H₂O
 - Purpose:
 - Dilute the amount of WBC , RBC to be able to count it. (NR RBC: M 4.3-6.2 x 10^6 /µL) (F: 3.8-5.5 x 10^6 /µL) (NR WBC: 4.3-10.8 x 10^3 /µL)
 - To lyses the RBC and platelets (the diluents lyses also the WBC but takes longer time) (time factor is critical)

Methodology

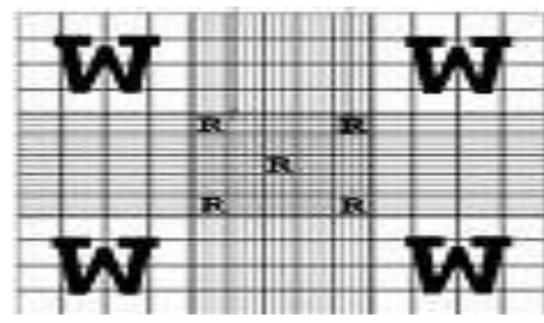
- Dilution:
 - 1:20 dilution or 1:50 (ex: chronic lukemia)
 - (1+19=20)
 - $(50\mu L \text{ of blood} + 950 \mu L \text{ diluent})$
- Loading the sample:



WBC count

The hemocytometer contains 2

Neubauer counting chamber →


Each chamber contains:

*4 WBC counting squares

*Each contains 16 squares

100 RBC= 10 Platelets= 1 WBC

Chose 90° lines, count only the cells that on those lines (ex: L-shape) apply it to all squares for maximum accuracy

Calculation

- Cells/ $\mu L =$
- no. of cells in 1 large square x Dilution factor

volume factor (0.1)

Dilution factor= reciprocal of dilution (20)

Volume factor = (width x length x height)= 0.1