METRIC SPACES

1. METRIC SPACES

Definition 1.1:[Metric Space]

Let X be a none-empty set. A mapping $d: X \times X \longrightarrow \mathbb{R}$ is said to be a metric space on x if it satisfies the following conditions

- (1) $d(x,y) \ge 0 \quad \forall x, y \in X$
- (2) $d(x,y) = 0 \Leftrightarrow x = y \quad \forall x, y \in X$
- (3) $d(x,y) = d(y,x), \quad \forall x, y \in X$ (Symmetric)
- (4) $d(x,y) \le d(x,z) + d(z,y)$ $\forall x, y, z \in X$ (Triangle Inequality)

Example 1: Let *X* be any non-empty set .Define a mapping $d: X \times X \longrightarrow \mathbb{R}$ by $d(x, y) = \begin{cases} 0, & \text{if } x = y; \\ 1, & \text{if } x \neq y. \end{cases}$ Then *d* is a metric on *X*, and this metric is called discrete metric.

Example 2: Let $X = \mathbb{F}^n(\mathbb{C}^n, \mathbb{R}^n)$, $n \ge 1$. Let $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{F}^n$ Define $d : X \times X \longrightarrow \mathbb{R}$ by $d(x, y) = \sqrt{\sum_{k=1}^n |x_k - y_k|^2} = \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + \dots + |x_n - y_n|^2}$. To see the Triangle Inequality, we will need Minkowski Inequality If $a_i, b_i \in \mathbb{F}$ $i = 1, 2, \dots, n$, and 1 , then

$$p \left(\sum_{i=1}^{n} |a_i + b_i|^p \le \sqrt[p]{\sum_{i=1}^{n} |a_i|^p} + \sqrt[p]{\sum_{i=1}^{n} |b_i|^p} \right)$$

Now, let $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n), z = (z_1, z_2, \dots, z_n) \in \mathbb{F}^n$

$$d(x,y) = \sqrt{\sum_{k=1}^{n} |x_k - y_k|^2}$$
Add and Subtract z_k .
$$= \sqrt{\sum_{k=1}^{n} |(x_k - z_k) + (z_k - y_k)|^2}$$
Use Minkowski Inequality.
$$\leq \sqrt{\sum_{k=1}^{n} |x_k - z_k|^2} + \sqrt{\sum_{k=1}^{n} |z_k - y_k|^2}.$$
$$= d(x,z) + d(z,y)$$

November 15, 2008

© Dr.Hamed Al-Sulami

FIGURE 1

Example 3: l_p . Let p be a real number such that $1 \le p < \infty$. l_p is the space of all sequence $x = \{x_n\}_{n=1}^{\infty}$ in \mathbb{F} such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$ $(x = \{x_n\}_{n=1}^{\infty} \text{ converges}).$ $l_p = \{x = \{x_n\}_{n=1}^{\infty} | \sum_{n=1}^{\infty} |x_n|^p < \infty, x_n, \in \mathbb{F}, \forall n \in \mathbb{N}\}$

Define the mapping $d: l_p \times l_p \longrightarrow \mathbb{R}$ by $d(x, y) = d(\{x_n\}, \{y_n\}) = \sqrt[p]{\sum_{n=1}^{\infty} |x_n - y_n|^p}$. Then *d* is a metric on l_p .

Example 4: C([a,b]). Let a,b be two real numbers such that a < b. C([a,b]) is the space of all continuous real-valued functions f over [a,b].

 $C([a,b]) = \{f : [a,b] \to \mathbb{R} \mid f \text{ is continuous on } [a,b]\} \text{ Define the mappings } d_1, d_{\infty} : C([a,b]) \times C([a,b]) \longrightarrow \mathbb{R} \text{ as follows:}$ $d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)| \text{ and}$ $d_1(f,g) = \int_a^b |f(x) - g(x)| dx. \text{ Then } d_1, d_{\infty} \text{ are metrics on } C([a,b]).$

Open sets and closed sets.

Definition 1.2:[Basic Definition]

Let (X,d) be a metric space. Let $E \subseteq X$, and let $x_0 \in X$.

- (1) Let $x \in X$ and r > 0. We define the *open ball* of radius r about x to be the set $B_r(x) = \{y \in X \mid d(x, y) < r\}$.
- (2) We say that *E* is open set if for each $x \in E$ there is an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq E$.
- (3) We say that *E* is closed set if $E^c = X \setminus E$ is open set.
- (4) We say that x_0 is an interior point of *E* if there exist r > 0 such that $B_r(x_0) \subseteq E$.
- (5) We say that x_0 is a limit point of E if for each r > 0, $B_r(x_0) \cap (E \setminus \{x_0\}) \neq \phi$.
- (6) The set of all interior points of *E* is denoted by E° .
- (7) The set of all limit points of *E* is denoted by E'.
- (8) The closure set of *E* ,denoted by \overline{E} , is $\overline{E} = E \cup E'$.
- (9) We say that x_0 is a boundary point of E if for each r > 0, $B_r(x_0) \cap E \neq \phi$ and $B_r(x_0) \cap E^c \neq \phi$.
- (10) The set of all boundary points of E is denoted by ∂E .

November 15, 2008

Below you will find some of elementary results about metric space- you should try to prove them-

Result 1.1:

Let (X,d) be a metric space. Let $E \subseteq X$. Then

- (1) ϕ and *X* are both open and closed.
- (2) An arbitrary union of open sets in X and a finite intersection of open sets in X are open sets in X.
- (3) An arbitrary intersection of closed sets in X and a finite union of closed sets in X are closed sets in X.
- (4) *G* is open $\Leftrightarrow G = G^{\circ}$.
- (5) *G* is closed $\Leftrightarrow G = \overline{G}$.

Definition 1.3:[Distance between sets and diameter]

Let (X, d) be a metric space. Let $F, E \subseteq X$, and let $x_0 \in X$.

- (1) The distance between E and $x_0 \in X$ is denoted by $D(x_0, E)$, is defined by $D(x_0, E) = \inf_{y \in E} d(x_0, y)$.
- (2) The distance between the sets *E* and *F*, denoted by D(F,E), is defined as $D(F,E) = \inf_{x \in E, y \in E} d(x,y)$.
- (3) The diameter of the set *F*, denoted by $\delta(F)$, is defined as $\delta(F) = \sup_{x,y \in F} d(x,y)$.

Result 1.2:

Let (X,d) be a metric space. Let $E, F \subseteq X$. Then

- (1) $D(\overline{F},\overline{E}) = D(E,F).$
- (2) If $x \in \overline{E} \Leftrightarrow D(x, E) = 0$.
- (3) $\delta(\overline{E}) = \delta(E)$.
- (4) If $E \subseteq F \Rightarrow \delta(E) \leq \delta(F)$.

(5)
$$E = \{x\} \Leftrightarrow \delta(E) = 0.$$

(6) Let $x, y \in X$, then $|D(x, E) - D(y, F)| \le d(x, y)$.

Convergence and completeness.

Definition 1.4:[Convergent and Cauchy Sequence]

Let (X,d) be a metric space. Let $\{x_n\} \subseteq X$, be a sequence.

- (1) We say that $\{x_n\}$ is convergent to $x \in X$ if for each $\varepsilon > 0$ there exist $N \in \mathbb{N}$ such that if $n > N \Rightarrow d(x_n, x) < \varepsilon$, and we write $\lim_{n \to \infty} x_n = x$.
- (2) We say that $\{x_n\}$ is Cauchy if for each $\varepsilon > 0$ there exist $N \in \mathbb{N}$ such that if $n, m > N \Rightarrow d(x_n, x_m) < \varepsilon$.
- (3) We say that $\{x_n\}$ is bounded if there exist M > 0 such that $\delta(\{x_n\}) \le M$.

Result 1.3:

Let (X,d) be a metric space. Let $\{x_n\} \subseteq X$, be a sequence. Then

- (1) If $\{x_n\}$ is convergent, then $\{x_n\}$ is bounded and its limit is unique.
- (2) A Cauchy sequence is bounded.
- (3) A convergent sequence is Cauchy.
- (4) If $x_n \to x, y_n \to y$ in $X \Rightarrow d(x_n, y_n) \to d(x, y)$.
- (5) If $\{x_n\}$ is convergent to $x \in X$, then every subsequence $\{x_{n_k}\}$ is convergent to $x \in X$.
- (6) If $\{x_n\}$ is Cauchy sequence and if $\{x_{n_k}\}$ is convergent subsequence to $x \in X$, then $\lim_{n \to \infty} x_n = x$.

Definition 1.5:[Complete Metric]

Let (X,d) be a metric space. We say that X is complete metric space if every Cauchy sequence in X converges to a point in X.

Example 5:

- (1) The spaces \mathbb{R}^n , \mathbb{C}^n with $d(x,y) = \sqrt{\sum_{k=1}^n |x_k y_k|^2}$ are complete.
- (2) The space l_p with the metric $d(x,y) = d(\{x_n\},\{y_n\}) = \sqrt[p]{\sum_{n=1}^{\infty} |x_n y_n|^p}$ is complete. (3) The space l_{∞} with the metric $d(x,y) = d(\{x_n\},\{y_n\}) = \sup_{n} |x_n y_n|$ is complete.
- (4) The space C([a,b]) with the metric $d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$ is complete.

Example 6:

(1) The spaces \mathbb{Q} with d(x,y) = |x-y| is not complete. For example the sequence $x_1 = 1, x_{n+1} = \frac{x_n^2 + 2}{2x_n}$ is in \mathbb{Q} , but $\lim_{n\to\infty}x_n=\sqrt{2}\notin\mathbb{Q}.$

(2) The space C([-1,1]) with the metric $d_1(f,g) = \int |f(x) - g(x)| dx$ is not complete. For example let

$$f_n(x) = \begin{cases} 1, & \text{if } -1 \le x \le 0; \\ 1 - nx, & \text{if } 0 < x < 1/n; \\ 0, & \text{if } 1/n \le x \le 1. \end{cases}$$
 Then $\{f_n\}$ is Cauchy but it converges $\chi_{[-1,0]} \notin C([-1,1])$

Theorem 1.1: []

Let *E* be a subset of a metric space (X, d) and let $x \in X$. Then

- (1) $x \in \overline{E} \Leftrightarrow \exists \{x_n\} \subset E \ni \lim_{n \to \infty} x_n = x.$
- (2) $x \in E' \Rightarrow \exists \{x_n\} \subset E \ni \lim_{n \to \infty} x_n = x.$

November 15, 2008

© Dr.Hamed Al-Sulami

Metric Spaces

Proof:

- (1) (\Rightarrow) Suppose that $x \in \overline{E}$. For each $n \in \mathbb{N}$, $B_{1/n}(x) \cap E \neq \phi$. Pick $x_n \in B_{1/n}(x) \cap E$. Now, $d(x_n, x) < \frac{1}{n} \Rightarrow \lim_{n \to \infty} x_n = x$. (\Leftarrow) If $\{x_n\} \subset E \ni \lim_{n \to \infty} x_n = x$, then for any r > 0, $\exists N \in \mathbb{N} \ni \text{ if } n > N \Rightarrow d(x, x_n) < r$. Thus $B_r(x) \cap E \neq \phi$. Hence $x \in \overline{E}$.
- (2) Suppose that $x \in E'$. Choose $x_1 \in E$ such that $x_1 \neq x$ and $d(x,x_1) < 1$. Now, choose $x_2 \in E \setminus \{x\}$ such that $d(x,x_2) < \min\{d(x,x_1), 1/2\}$. Now, for each $n \ge 3$ pick $x_n \in E \setminus \{x\}$ such that $d(x,x_n) < \min\{d(x,x_{n-1}), 1/n\}$. Hence we have a sequence $\{x_n\} \subset E$ such that $\lim_{n \to \infty} x_n = x$.

Dense sets and Separable Spaces.

Definition 1.6:[Separable Spaces]

Let (X,d) be a metric space. Let $E \subseteq X$.

- (1) We say that *E* is dense if $\overline{E} = X$.
- (2) We say that X is separable if it has a countable dense subset.

Example 7:

- (1) The spaces \mathbb{R}^n , \mathbb{C}^n with $d(x, y) = \sqrt{\sum_{k=1}^n |x_k y_k|^2}$ are separable.
- (2) The space l_p with the metric $d(x,y) = d(\{x_n\},\{y_n\}) = \sqrt[p]{\sum_{n=1}^{\infty} |x_n y_n|^p}$.
- (3) The space l_{∞} with the metric $d(x,y) = d(\{x_n\},\{y_n\}) = \sup_{x_n} |x_n y_n|$ is not separable.
- (4) The space C([a,b]) with the metric $d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$ is separable.

Continuous Functions.

Definition 1.7:[Continuity]

Let $(X, d_1), (Y, d_1)$ be a metric spaces. A function $f: X \to Y$ is called continuous at $x_0 \in X$ if for each $\varepsilon > 0$, \exists a $\delta > 0$ such that $x \in X$ and $d_1(x, x_0) < \delta \Rightarrow d_2(f(x), f(x_0)) < \varepsilon$. *f* is continuous on *X* if it is continuous at each point of *X*. *Theorem 1.2: []*

Let $(X, d_1), (Y, d_1)$ be a metric spaces and let $f: X \to Y$ be a function Then, the following statements are equivalent:

- (1) f is continuous on X.
- (2) $\forall x \in X \text{ and } \forall \{x_n\} \subset X \ni \lim_{n \to \infty} x_n = x \Rightarrow \lim_{n \to \infty} f(x_n) = f(x).$
- (3) For each *E* is open in $Y \Rightarrow f^{-1}(E)$ is open in *X*
- (4) For each *F* is closed in $Y \Rightarrow f^{-1}(E)$ is closed in *X*
- (5) $f(\overline{E}) \subset \overline{f(E)}, \forall E \subseteq X.$
- (6) $\overline{f^{-1}(F)} \subset f^{-1}(\overline{F}), \forall F \subseteq Y.$

November 15, 2008

© Dr.Hamed Al-Sulami

Definition 1.8:[Homeomorphism]

Let $(X, d_1), (Y, d_1)$ be a metric spaces.

- (1) A function $f: X \to Y$ is called homeomorphism if f is a continuous bijective and f^{-1} is continuous.
- (2) A function $f: X \to Y$ is called isometry if $d_2(f(x), f(y)) = d_1(x, y), \quad x, y \in X.$