
Metric Spaces Functional Analysis

METRIC SPACES

1. METRIC SPACES

Definition 1.1:[Metric Space]

Let X be a none-empty set. A mapping d : X ×X −→ R is said to be a metric space on x if it satisfies the following

conditions

(1) d(x,y)≥ 0 ∀x,y ∈ X

(2) d(x,y) = 0⇔ x = y ∀x,y ∈ X

(3) d(x,y) = d(y,x), ∀x,y ∈ X (Symmetric)

(4) d(x,y)≤ d(x,z)+d(z,y) ∀x,y,z ∈ X (Triangle Inequality)

Example 1: Let X be any non-empty set .Define a mapping d : X ×X −→ R by d(x,y) =





0, if x = y;

1, if x 6= y.
Then d is a metric on X , and this metric is called discrete metric.

Example 2: Let X = Fn(Cn,Rn), n ≥ 1. Let x = (x1,x2, · · · ,xn),y = (y1,y2, · · · ,yn) ∈ Fn Define d : X × X −→ R

by d(x,y) =

√
n

∑
k=1
|xk− yk|2 =

√
|x1− y1|2 + |x2− y2|2 + · · ·+ |xn− yn|2. To see the Triangle Inequality, we will need

Minkowski Inequality If ai,bi ∈ F i = 1,2, · · · ,n, and 1 < p < ∞, then

p

√
n

∑
i=1
|ai +bi|p ≤ p

√
n

∑
i=1
|ai|p + p

√
n

∑
i=1
|bi|p

Now, let x = (x1,x2, · · · ,xn),y = (y1,y2, · · · ,yn),z = (z1,z2, · · · ,zn) ∈ Fn

d(x,y) =

√
n

∑
k=1
|xk− yk|2 Add and Subtract zk.

=

√
n

∑
k=1
|(xk− zk)+(zk− yk)|2 Use Minkowski Inequality .

≤
√

n

∑
k=1
|xk− zk|2 +

√
n

∑
k=1
|zk− yk|2.

= d(x,z)+d(z,y)
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Example 3: lp. Let p be a real number such that 1 ≤ p < ∞. lp is the space of all sequence x = {xn}∞
n=1 in F such that

∞
∑

n=1
|xn|p < ∞ (x = {xn}∞

n=1 converges).

lp = {x = {xn}∞
n=1 |

∞
∑

n=1
|xn|p < ∞, xn,∈ F,∀n ∈N}

Define the mapping d : lp× lp −→ R by d(x,y) = d({xn},{yn}) = p

√
∞

∑
n=1

|xn− yn|p. Then d is a metric on lp.

Example 4: C([a,b]). Let a,b be two real numbers such that a < b. C([a,b]) is the space of all continuous real-valued

functions f over [a,b].

C([a,b]) = { f : [a,b]→ R | f is continuous on [a,b]} Define the mappings d1,d∞ : C([a,b])×C([a,b])−→ R as follows:

d∞( f ,g) = sup
x∈[a,b]

| f (x)−g(x)| and

d1( f ,g) =
b∫

a

| f (x)−g(x)|dx. Then d1,d∞ are metrics on C([a,b]).

Open sets and closed sets.

Definition 1.2:[Basic Definition]

Let (X ,d) be a metric space. Let E ⊆ X , and let x0 ∈ X .

(1) Let x ∈ X and r > 0. We define the open ball of radius r about x to be the set Br(x) = {y ∈ X | d(x,y) < r}.
(2) We say that E is open set if for each x ∈ E there is an ε > 0 such that Bε(x)⊆ E.

(3) We say that E is closed set if Ec = X \E is open set.

(4) We say that x0 is an interior point of E if there exist r > 0 such that Br(x0)⊆ E.

(5) We say that x0 is a limit point of E if for each r > 0 , Br(x0)∩ (E \{x0}) 6= φ.

(6) The set of all interior points of E is denoted by E◦.

(7) The set of all limit points of E is denoted by E ′.

(8) The closure set of E ,denoted by E, is E = E ∪E ′.

(9) We say that x0 is a boundary point of E if for each r > 0 , Br(x0)∩E 6= φ and Br(x0)∩Ec 6= φ.

(10) The set of all boundary points of E is denoted by ∂E.
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Below you will find some of elementary results about metric space- you should try to prove them-

Result 1.1:

Let (X ,d) be a metric space. Let E ⊆ X . Then

(1) φ and X are both open and closed.

(2) An arbitrary union of open sets in X and a finite intersection of open sets in X are open sets in X .

(3) An arbitrary intersection of closed sets in X and a finite union of closed sets in X are closed sets in X .

(4) G is open ⇔ G = G◦.

(5) G is closed ⇔ G = G.

Definition 1.3:[Distance between sets and diameter ]

Let (X ,d) be a metric space. Let F,E ⊆ X , and let x0 ∈ X .

(1) The distance between E and x0 ∈ X is denoted by D(x0,E), is defined by D(x0,E) = inf
y∈E

d(x0,y).

(2) The distance between the sets E and F, denoted by D(F,E), is defined as D(F,E) = inf
x∈F,y∈E

d(x,y).

(3) The diameter of the set F , denoted by δ(F), is defined as δ(F) = sup
x,y∈F

d(x,y).

Result 1.2:

Let (X ,d) be a metric space. Let E,F ⊆ X . Then

(1) D(F ,E) = D(E,F).

(2) If x ∈ E ⇔ D(x,E) = 0.

(3) δ(E) = δ(E).

(4) If E ⊆ F ⇒ δ(E)≤ δ(F).

(5) E = {x}⇔ δ(E) = 0.

(6) Let x,y ∈ X , then |D(x,E)−D(y,F)| ≤ d(x,y).

Convergence and completeness.

Definition 1.4:[Convergent and Cauchy Sequence]

Let (X ,d) be a metric space. Let {xn} ⊆ X , be a sequence.

(1) We say that {xn} is convergent to x ∈ X if for each ε > 0 there exist N ∈N such that if n > N ⇒ d(xn,x) < ε, and

we write lim
n→∞

xn = x.

(2) We say that {xn} is Cauchy if for each ε > 0 there exist N ∈N such that if n,m > N ⇒ d(xn,xm) < ε.

(3) We say that {xn} is bounded if there exist M > 0 such that δ({xn})≤M.
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Result 1.3:

Let (X ,d) be a metric space. Let {xn} ⊆ X , be a sequence. Then

(1) If {xn} is convergent, then {xn} is bounded and its limit is unique.

(2) A Cauchy sequence is bounded.

(3) A convergent sequence is Cauchy.

(4) If xn → x,yn → y in X ⇒ d(xn,yn)→ d(x,y).

(5) If {xn} is convergent to x ∈ X , then every subsequence {xnk} is convergent to x ∈ X .

(6) If {xn} is Cauchy sequence and if {xnk} is convergent subsequence to x ∈ X , then lim
n→∞

xn = x.

Definition 1.5:[Complete Metric]

Let (X ,d) be a metric space. We say that X is complete metric space if every Cauchy sequence in X converges to a point

in X .

Example 5:

(1) The spaces Rn, Cn with d(x,y) =
√

n
∑

k=1
|xk− yk|2 are complete.

(2) The space lp with the metric d(x,y) = d({xn},{yn}) = p

√
∞

∑
n=1

|xn− yn|p is complete.

(3) The space l∞ with the metric d(x,y) = d({xn},{yn}) = sup
n
|xn− yn| is complete.

(4) The space C([a,b]) with the metric d∞( f ,g) = sup
x∈[a,b]

| f (x)−g(x)| is complete.

Example 6:

(1) The spaces Q with d(x,y) = |x− y| is not complete. For example the sequence x1 = 1,xn+1 =
x2

n +2
2xn

is in Q, but

lim
n→∞

xn =
√

2 /∈Q.

(2) The space C([−1,1]) with the metric d1( f ,g) =
1∫

−1

| f (x)−g(x)|dx. is not complete. For example let

fn(x) =





1, if −1≤ x≤ 0;

1−nx, if 0 < x < 1/n;

0, if 1/n≤ x≤ 1.

. Then { fn} is Cauchy but it converges χ[−1,0] /∈C([−1,1])

Theorem 1.1: []

Let E be a subset of a metric space (X ,d) and let x ∈ X . Then

(1) x ∈ E ⇔∃{xn} ⊂ E 3 lim
n→∞

xn = x.

(2) x ∈ E′ ⇒ ∃{xn} ⊂ E 3 lim
n→∞

xn = x.
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Proof:

(1) (⇒) Suppose that x∈ E. For each n∈N, B1/n(x)∩E 6= φ. Pick xn ∈ B1/n(x)∩E. Now, d(xn,x) < 1
n ⇒ lim

n→∞
xn = x.

(⇐) If {xn} ⊂ E 3 lim
n→∞

xn = x, then for any r > 0, ∃ N ∈ N 3 if n > N ⇒ d(x,xn) < r. Thus Br(x)∩E 6= φ.

Hence x ∈ E.

(2) Suppose thst x ∈ E′. Choose x1 ∈ E such that x1 6= x and d(x,x1) < 1. Now, choose x2 ∈ E \ {x} such that

d(x,x2) < min{d(x,x1),1/2}. Now, for each n ≥ 3 pick xn ∈ E \ {x} such that d(x,xn) < min{d(x,xn−1),1/n}.
Hence we have a sequence {xn} ⊂ E such that lim

n→∞
xn = x.

�

Dense sets and Separable Spaces.

Definition 1.6:[Separable Spaces]

Let (X ,d) be a metric space. Let E ⊆ X .

(1) We say that E is dense if E = X .

(2) We say that X is separable if it has a countable dense subset.

Example 7:

(1) The spaces Rn, Cn with d(x,y) =
√

n
∑

k=1
|xk− yk|2 are separable.

(2) The space lp with the metric d(x,y) = d({xn},{yn}) = p

√
∞

∑
n=1

|xn− yn|p.
(3) The space l∞ with the metric d(x,y) = d({xn},{yn}) = sup

n
|xn− yn| is not separable.

(4) The space C([a,b]) with the metric d∞( f ,g) = sup
x∈[a,b]

| f (x)−g(x)| is separable.

Continuous Functions.

Definition 1.7:[Continuity]

Let (X ,d1),(Y,d1) be a metric spaces. A function f : X →Y is called continuous at x0 ∈ X if for each ε > 0, ∃ a δ > 0

such that x ∈ X and d1(x,x0) < δ⇒ d2( f (x), f (x0)) < ε. f is continuous on X if it is continuous at each point of X .

Theorem 1.2: []

Let (X ,d1),(Y,d1) be a metric spaces and let f : X → Y be a function Then, the following statements are equivalent:

(1) f is continuous on X .

(2) ∀x ∈ X and ∀ {xn} ⊂ X 3 lim
n→∞

xn = x⇒ lim
n→∞

f (xn) = f (x).

(3) For each E is open in Y ⇒ f−1(E) is open in X

(4) For each F is closed in Y ⇒ f−1(E) is closed in X

(5) f (E)⊂ f (E), ∀ E ⊆ X .

(6) f−1(F)⊂ f−1(F), ∀ F ⊆ Y.
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Definition 1.8:[Homeomorphism]

Let (X ,d1),(Y,d1) be a metric spaces.

(1) A function f : X → Y is called homeomorphism if f is a continuous bijective and f−1 is continuous.

(2) A function f : X → Y is called isometry if d2( f (x), f (y)) = d1(x,y), x,y ∈ X .

November 15, 2008 6 © Dr.Hamed Al-Sulami


