King Abdulaziz University

0.5 Transformations of Functions

Dr. Hamed Al-Sulami

© 2008 hhaalsalmi@kau.edu.sa
Prepared: November 11, 2008
http://www.kau.edu.sa/hhaalsalmi
Presented: November 11, 2008, 2008

Combinations of Functions

Algebra of Functions:

Definition .1: [The Sum, Difference, Product, and Quotient of two functions] Let f and g be functions with domains $D(f)$ and $D(g)$. Then the functions $f+g, f-g, f g$, and $\frac{f}{g}$ are defined as follows:

Name	Notation	Definition	Domain
Sum:	$f+g$	$(f+g)(x)=f(x)+g(x)$	$D(f) \cap D(g)$
Difference:	$f-g$	$(f-g)(x)=f(x)-g(x)$	$D(f) \cap D(g)$
Product:	$f g$	$(f g)(x)=f(x) g(x)$	$D(f) \cap D(g)$
Quotient:	$\frac{f}{g}$	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$	$(D(f) \cap D(g)) \backslash\{x: g(x)=0\}$

Example 1. Let $f(x)=x^{2}+1$ and $g(x)=\sqrt{2 x-4}$. Find $f+g, f-g, f g, f / g$, and their domains.

Solution: Since $f(x)=x^{2}+1$ is a polynomial, then $D(f)=\mathbb{R}$. Also, since $g(x)=\sqrt{2 x-4}$ is an even root function, then to find the domain we solve the inequality

$$
2 x-4 \geq 0 \Leftrightarrow 2 x \geq 4 \Leftrightarrow x \geq 2 .
$$

Hence $D(g)=[2, \infty)$. Now, $D(f) \cap D(g)=\mathbb{R} \cap[2, \infty)=[2, \infty)$.

$$
\begin{array}{rlrl}
(f+g)(x) & =f(x)+g(x) & & \text { By definition } \\
& =x^{2}+1+\sqrt{2 x-4} & & \text { With } D(f+g)=[2, \infty), \\
(f-g)(x) & =f(x)-g(x) & & \text { By definition } \\
& =x^{2}+1-\sqrt{2 x-4} & & \text { With } D(f-g)=[2, \infty), \\
(f g)(x) & =f(x) g(x) & & \text { By definition } \\
& =\left(x^{2}+1\right) \sqrt{2 x-4} & & \text { With } D(f g)=[2, \infty), \\
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} & & \text { By definition } \\
& =\frac{x^{2}+1}{\sqrt{2 x-4}} & & \text { With } D(f+g)=[2, \infty) \backslash\{x: 2 x-4=0\}, \\
& & \text { With } D(f+g)=[2, \infty) \backslash\{2\}=(2, \infty) .
\end{array}
$$

EXAMPLE 2. Let $f(x)=x+\sqrt{x^{2}-1}, g(x)=\frac{2 x \sqrt{4-x^{2}}}{x+1}$ and $h(x)=\frac{\sqrt{2 x-1}}{\sqrt[4]{x^{2}-5 x+6}}$. Find the domain of f, g and h.

Solution:

- Notice that $f(x)=x+\sqrt{x^{2}-1}$ is the sum of x and $\sqrt{x^{2}-1}$, then

$$
D(f)=D(x)^{\odot} \cap D\left(\sqrt{x^{2}-1}\right)^{\odot}=\mathbb{R} \cap(-\infty-1] \cup[1, \infty)=(-\infty-1] \cup[1, \infty) .
$$

- Notice that $g(x)=\frac{2 x \sqrt{4-x^{2}}}{x+1}=\frac{2 x}{x+1} \cdot \sqrt{4-x^{2}}$ is the product of $\frac{2 x}{x+1}$ and $\sqrt{4-x^{2}}$, then

$$
D(g)=D\left(\frac{2 x}{x+1}\right)^{\odot} \cap D\left(\sqrt{4-x^{2}}\right)^{\odot}=(-\infty,-1) \cup(-1, \infty) \cap[-2,2]=[-2,-1) \cup(-1,2] .
$$

- Notice that $h(x)=\frac{\sqrt{2 x-1}}{\sqrt[4]{x^{2}-5 x+6}}$ is the quotient of $\sqrt{2 x-1}$ and $\sqrt[4]{x^{2}-5 x+6}$, then

$$
\begin{aligned}
D(h) & =D(\sqrt{2 x-1})^{(2} \cap D\left(\sqrt[4]{x^{2}-5 x+6}\right)^{2} \backslash\left\{x: x^{2}-5 x+6=0\right\} \\
& =[1 / 2, \infty) \cap(-\infty, 2] \cup[3, \infty) \backslash\{2,3\} \\
& =[3, \infty) \backslash\{2,3\}=(3, \infty) .
\end{aligned}
$$

Example 3. Let $g(x)=\sqrt{\frac{x}{x-1}}$. Find the domain of g.

Solution:

The function $g(x)=\sqrt{\frac{x}{x-1}}^{\circ}$ is an even root function, hence $\frac{x}{x-1} \geq 0$ (we are looking for $(+)$ sign $)$. Now, to solve the inequality $\frac{x}{x-1} \geq 0$, we find the zeros of the numerator and the denominator. $x=0$ is the zero of numerator and $x-1=0 \Leftrightarrow x=1$ is the zero of the denominator. Now, we use the real line to find the sign of each expression x and $x-1$.

$-\infty \longleftarrow$			
Test Value	-1	. 5	2
sign of x	$-1=-1 \quad(-)$	$0.5=0.5 \quad(+)$	$2=2 \quad(+)$
sign of $x-1$	$-1-1=-2 \quad(-)$	$0.5-1=-0.5 \quad(-)$	$2-1=1 \quad(+)$
sign of $\frac{x}{x-1}$	$(-) /(-)=+$	$(+) /(-)=-$	$(+) /(+)=+$

Hence $D(g)=(-\infty, 0] \cup(1, \infty)$.

Example 4. Let $f(x)=\frac{\sqrt{x}}{\sqrt{x-1}}$. Find the domain of f.
Solution: Notice that $f(x)=\frac{\sqrt{x}}{\sqrt{x-1}}$ is the quotient of \sqrt{x} and $\sqrt{x-1}$, then

$$
\begin{aligned}
D(h) & =D(\sqrt{x}) \cap D(\sqrt{x-1}) \backslash\{x: x-1=0\} \\
& =[0, \infty) \cap[1, \infty) \backslash\{1\} \\
& =[1, \infty) \backslash\{1\}=(1, \infty) .
\end{aligned}
$$

The Composition of Functions

Definition .2: [Composition of two functions]

The composition of two functions f and g, written $f \circ g$, is defined by $(f \circ g)(x)=f(g(x))$ for all x such that x is in the domain of g and $g(x)$ is in the domain of f.

Note 1: $D(f \circ g)=\{x: x \in D(g)$ and $g(x) \in D(f(g(x)))\}=D(g) \cap D(f(g(x)))$.
Example 5. If $f(x)=x^{2}+4$ and $g(x)=\sqrt{x-4}$. Find the domain of the following: $f \circ g$, and $g \circ f$.

Solution:

1. We have $(f \circ g)(x)=f(g(x))=f(\sqrt{x-4})=(\sqrt{x-4})^{2}+4=x-4+4=x$. $D(g)=[4, \infty)^{\circ}$ and $D(f(g(x)))=D(x)=\mathbb{R}$.
Hence $D(f \circ g)=D(g(x)) \cap D(f(g(x)))=\mathbb{R} \cap[4, \infty)=[4, \infty)$.
2. We have $(g \circ f)(x)=g(f(x))=g\left(x^{2}+4\right)=\sqrt{x^{2}+4-4}=\sqrt{x^{2}}=|x|, D(f)=\mathbb{R}$, and $D(g(f(x)))=D(|x|)=\mathbb{R}$.
Hence $D(g \circ f)=D(f(x)) \cap D(g(f(x)))=\mathbb{R} \cap \mathbb{R}=\mathbb{R}$.

ExAmple 6. If $f(x)=\sqrt{x}$ and $g(x)=\sqrt{1-x}$. Find the domain of the following: $f \circ g$, and $g \circ f$.

Solution:

1. We have $(f \circ g)(x)=f(g(x))=f(\sqrt{1-x})=\sqrt{\sqrt{1-x}}=\sqrt[4]{1-x} . D(g)=(-\infty, 1]^{\text {(3) }}$ and $D(\sqrt[4]{1-x})=(-\infty, 1]$. ${ }^{3}$
Hence $D(f \circ g)=D(g(x)) \cap D(f(g(x)))=(-\infty, 1]$.
2. We have $(g \circ f)(x)=g(f(x))=g(\sqrt{x})=\sqrt{1-\sqrt{x}}$, and $D(f)=[0, \infty)$. ${ }^{\text {? }}$ To find $D(\sqrt{1-\sqrt{x}})$ we have two conditions $x \geq 0$ and $1-\sqrt{x} \geq 0$

$$
\begin{aligned}
1-\sqrt{x} \geq 0 & \Leftrightarrow 1 \geq \sqrt{x} & & \text { move } \sqrt{x} \text { to the other side } \\
& \Leftrightarrow \sqrt{x} \leq 1 & & \text { rewrite the inequality } \\
& \Leftrightarrow(\sqrt{x})^{2} \leq 1^{2} & & \text { square both sides } \\
& \Leftrightarrow x \leq 1 & & \text { and since we have } 0 \leq x \\
& \Leftrightarrow 0 \leq x \leq 1 & &
\end{aligned}
$$

Hence $D(\sqrt{1-\sqrt{x}})=[0,1]$
Hence $D(g \circ f)=D(f(x)) \cap D(g(f(x)))=[0,1] \cap[0, \infty)=[0,1]$.

