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Power Series

Power series

Definition .1: [Power series]

A power series is a series of the form,
∞∑

n=0

an(x−a)n, where a, the center of the power series,

is a constant, the coefficients {an}∞n=0 is a sequence of numbers and x is a variable.

Note 1: The series
∞∑

n=0

an(x − a)n always converges for x = a since the terms of the

series are all zero except for the first term. So for x = a,
∞∑

n=0

an(x − a)n = a0. For

x = 0,
∞∑

n=0

xn = 1 + 0 + 02 + · · ·+ 0n + · · · = 1. For those values of x for which the power

series converges, the power series sums to a number. So we can think of the power series as

a function f whenever it converges. That is, f(x) =
∞∑

n=0

an(x− a)n for those values of f for

which the power series converges.
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Radius and Interval of Convergence

Theorem .1: [Convergence of a Power Series]

Exactly one of the following cases happen for a given power series
∞∑

n=0

an(x − a)n.

1. The series
∞∑

n=0

an(x − a)n converges for all values of x.

2. The series
∞∑

n=0

an(x − a)n converges for x = a only.

3. There is a number R for which the series
∞∑

n=0

an(x− a)n converges for |x− a| < R and

diverges for |x − a| > R.

In the third case the number R is called the Radius of convergence of the power series,
∞∑

n=0

an(x − a)n. In order to extend this notion to the other cases, define the radius of

convergence in the first case to be ∞ and in the second case the radius of convergence is
defined to be zero.
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Definition .2: [Interval of Convergence]

Let
∞∑

n=0

an(x − a)n be a power series about x = a. The interval of convergence for the

power series is the set of all values of x for which the power series converges. It is related
to the interval of convergence by the following where R is the interval of convergence for:
∞∑

n=0

an(x − a)n :

1. If R = ∞, then the interval of convergence is (−∞,∞) or, equivalently, R.

2. If R = 0, then the interval of convergence is the singleton set {a}.
3. If 0 < R < ∞, then the series converges for |x − a| < R, or −R < x − a < R ⇔

a−R < x < a + R. So the interval of convergence contains the interval (a−R, a + R)
together with any possible endpoints for which the power series converges.

Example 1. Find the radius and the intervals of convergence of the power series
∞∑

n=1

n!xn

Solution: Let an = n!xn. Using the Ratio Test we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣��n! · (n + 1)��xn · x
��n!��xn

∣∣∣∣ = lim
n→∞(n + 1)|x| =

{
0, if x = 0;
∞, if x �= 0.

Hence the power series converge for x = 0 and hence R = 0 and the interval of convergence
{0}. �
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Example 2. Find the radius and the intervals of convergence of the power series
∞∑

n=1

(−1)n(x − 1)n

n3n
.

Solution: Let an =
(−1)n(x − 1)n

n3n
. Using the Ratio Test we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1(x − 1)n+1

(n + 1)3n+1
· n3n

(−1)n(x − 1)n

∣∣∣∣
= lim

n→∞
n|x − 1|
3(n + 1)

=
|x − 1|

3
lim

n→∞
n

n + 1
=

|x − 1|
3

.

Now, the power series is convergent if
|x − 1|

3
< 1 ⇔ |x − 1| < 3. Hence the radius of

convergence is R = 3. The power series converges if

|x − 1| < 3 ⇔ −3 < x − 1 < 3 ⇔ −2 < x < 4.

Now, when x = −2,
∞∑

n=1

(−1)n(−2 − 1)n

n3n
=

∞∑
n=1

1
n

which is divergent (harmonic series).

When x = 4,
∞∑

n=1

(−1)n(4 − 1)n

n3n
=

∞∑
n=1

(−1)n

n
which is convergent by the Alternating Series

Test. So the interval of convergence is (−2, 4]. �

❘ ➡ ➡ ➦ � � � � ➥ ➡ �



Power Series c©Hamed Al-Sulami 6/14

Example 3. Find the radius and the intervals of convergence of the power series
∞∑

n=1

(−1)n+1(x + 2)n

n4n
.

Solution: Let an =
(−1)n+1(x + 2)n

n4n
. Using the Ratio Test we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+2(x + 2)n+1

(n + 1)4n+1
· (−1)n+1(x + 2)n

n4n

∣∣∣∣ = lim
n→∞

n|x + 2|
4(n + 1)

=
|x + 2|

4
lim

n→∞
n

n + 1
=

|x + 2|
4

.

Now, the power series is convergent if
|x + 2|

4
< 1 ⇔ |x + 2| < 4. Hence the radius of

convergence is R = 4. The power series converges if

|x + 2| < 4 ⇔ −4 < x + 2 < 4 ⇔ −6 < x < 2.

Now, when x = −6,
∞∑

n=1

(−1)n+1(−6 + 2)n

n4n
=

∞∑
n=1

−1
n

which is divergent (harmonic series).

When x = 2,
∞∑

n=1

(−1)n+1(2 + 2)n

n4n
=

∞∑
n=1

(−1)n+1

n
which is convergent by the Alternating

Series Test. So the interval of convergence is (−6, 2]. �
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Example 4. Find the radius and the intervals of convergence of the power series
∞∑

n=1

(−1)n(x + 1)n

n!
.

Solution: Let an =
(−1)n+1(x + 2)n

n4n
. Using the Ratio Test we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1(x + 1)n+1

(n + 1)!
· n!
(−1)n(x + 1)n

∣∣∣∣
= lim

n→∞

∣∣∣∣ (−1)���(−1)n����(x + 1)n(x + 1)
(n + 1)��n!

· ��n!
���(−1)n

����(x + 1)n

∣∣∣∣
= lim

n→∞
|x + 1|
(n + 1)

= 0 < 1.

Now, the power series is convergent for all x Hence the radius of convergence is R = ∞.
The power series converges for all x and hence the interval of convergence is R. �

❘ ➡ ➡ ➦ � � � � ➥ ➡ �



Power Series c©Hamed Al-Sulami 8/14

Geometric Power Series

Remember that the sum of the geometric series:
∞∑

n=0

xn =
1

1 − x
, |x| < 1.

Example 5. Find a power series for f(x) =
1

x − 2
center at 0.

Solution:

f(x) =
1

x − 2
make it in the shape of Geometric Power Series

=
1

−2 + x

=
1

−2
(
1 − x

2

)
=

−1
2

· 1
1 − (

x
2

)

=
−1
2

·
∞∑

n=0

(x

2

)n

for
∣∣∣x
2

∣∣∣ < 1

f(x) =
∞∑

n=0

−xn

2n+1
for |x| < 2.

�
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Example 6. Find a power series for f(x) =
x

3x + 2
center at 0.

Solution:

f(x) =
x

3x + 2
make it in the shape of Geometric Power Series

=
x

2 + 3x

=
x

2
(
1 + 3x

2

)
=

x

2
(
1 − (− 3x

2 )
)

=
x

2
· 1
1 − (−3x

2

)

=
x

2
·

∞∑
n=0

(−3x

2

)n

for
∣∣∣∣−3x

2

∣∣∣∣ < 1

=
x

2

∞∑
n=0

(−1)n3nxn

2n
for |3x| < 2

f(x) =
∞∑

n=0

(−1)n3nxn+1

2n+1
for |x| <

2
3
.

�
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Example 7. Find a power series for f(x) =
x

x2 + 1
center at 0.

Solution:

f(x) =
x

x2 + 1
make it in the shape of Geometric Power Series

=
x

1 + x2

=
x

1 − (−x2)

= x · 1
1 − (−x2)

= x ·
∞∑

n=0

(−x2
)n

for
∣∣−x2

∣∣ < 1

= x ·
∞∑

n=0

(−1)n(x2)n for |x|2 < 1

= x ·
∞∑

n=0

(−1)nx2n for |x|2 < 1

f(x) =
∞∑

n=0

(−1)nx2n+1 for |x| < 1.

�
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Example 8. Find a power series for f(x) =
x − 2
x + 1

center at 2.

Solution:

f(x) =
x − 2
x + 1

make it in the Geometric Series shape with r = x − 2

=
x − 2

1 + x − 2 + 2
add and subtract 2

=
x − 2

3 + (x − 2)

=
x − 2

3
· 1
1 − (−x−2

3 )

=
x − 2

3
·

∞∑
n=0

(
−x − 2

3

)n

for
∣∣∣∣−x − 2

3

∣∣∣∣ < 1

=
x − 2

3
·

∞∑
n=0

(−1)n (x − 2)n

3n
for |x − 2| < 3

f(x) =
∞∑

n=0

(−1)n (x − 2)n+1

3n+1
for − 3 < x − 2 < 3 ⇔ −1 < x < 5.

�
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Differentiating and Integrating a Power Series

Theorem .2: []

Suppose f(x) =
∞∑

n=0

an(x − a)n has radius of convergence R > 0. Then f is differentiable

(and therefore continuous) on (R − a, R + a) and integrable. Moreover

1. f ′(x) =
∞∑

n=0

an
d

dx
(x − a)n =

∞∑
n=1

nan(x − a)n−1

2.
∫

f(x) dx =
∞∑

n=0

an

∫
(x − a)ndx =

∞∑
n=0

an

n + 1
(x − a)n+1 + C

where C is the constant of integration for the indefinite integral.

Note 2:

Note that if f(x) =
1

1 − x
, then f ′(x) =

−1
(1 − x)2

and
∫

1
1 − x

dx = − ln |1 − x| + C.

The interval of convergence of a power series after differentiation and integration may change.
So we need to chuck the endpoints of the interval of convergence of the original power series.
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Example 9. Let f(x) =
1

2x + 3
.

(a) Find the power series for f and the interval of convergence.

(b) Find the power series for g(x) =
−2

(2x + 3)2
.

(c) Use part (b) to find the sum of

∞∑
n=1

−n2n

3n+1
.

Solution:

(a)

f(x) =
1

2x + 3
=

1

3(1 + 2x
3

)
=

1

3
· 1

1 − (− 2x
3

)
=

1

3

∞∑
n=0

(
−2x

3

)n ∣∣∣∣−2x

3

∣∣∣∣ < 1

=
∞∑

n=0

(−1)n 2nxn

3n+1
− 3

2
< x <

3

2
.

(b) We have f(x) =
1

2x + 3
. Now, f ′(x) =

−2

(2x + 3)2
= g(x). Hence by part (a) we have

f(x) =

∞∑
n=0

(−1)n 2nxn

3n+1
. Therefore g(x) = f ′(x) =

∞∑
n=1

(−1)n n2nxn−1

3n+1
.

(c)

∞∑
n=1

−n2n

3n+1
= −2.❍

?

�
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Note that
∞∑

n=1

−n2n

3n+1
=

∞∑
n=1

(−1)(−1)n−1n2n(−1)n−1

3n+1
x = −1

=
∞∑

n=1

(−1)nn2n(−1)n−1

3n+1

= g(−1)

=
−2

(2(−1) + 3)2

= −2.
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Example 10. Let f(x) =
1

x2 + 1
.

(a) Find the power series for f and the interval of convergence.

(b) Find the power series for g(x) = tan−1 x about x = 1.

(c) Use part (b) to find the sum of
∞∑

n=1

(−1)n

2n + 1
.

Solution:

(a) f(x) =
1

x2 + 1
=

1

1 − (−x2)
=

∞∑
n=0

(−x2)n =
∞∑

n=0

(−1)nx2n, | − x2| < 1 ⇔ −1 < x < 1.

(b) Let f(x) =
1

x2 + 1
. Now,

∫
f(x) dx + C = tan−1 x = g(x). Hence by part (a) we have

f(x) =
∞∑

n=0

(−1)nx2n. Therefore g(x) =

∫
f(x) dx =

∞∑
n=0

(−1)n x2n+1

2n + 1
+ C.

To find C let x = 0 ⇒ 0 = tan−1 0 = 0 + C ⇒ C = 0. Now, when x = −1❍? the power series is

convergent. Also, when x = 1❍? the power series is convergent.

Hence g(x) = tan−1 x =

∞∑
n=0

(−1)n x2n+1

2n + 1
, −1 ≤ x ≤ 1.

(c)
∞∑

n=1

(−1)n

2n + 1
=

π

4
.❍
?

�
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when x = −1 then
∞∑

n=0

(−1)n (−1)2n+1

2n + 1
=

∞∑
n=0

(−1)n+1

2n + 1
which is convergent.

When x = 1 then
∞∑

n=0

(−1)n (1)2n+1

2n + 1
=

∞∑
n=0

(−1)n

2n + 1
which is convergent.

Note that
∞∑

n=1

(−1)n

2n + 1
=

∞∑
n=1

(−1)n (1)2n+1

2n + 1
x = 1

= g(1)

= tan−1 1

=
π

4
.
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