NORMED AND BANACH SPACES

1. Normed and Banach Spaces

Definition 1.1:[Normed Space]

Let X be a linear space over the field \mathbb{F}. A mapping $\|\|:. X \longrightarrow \mathbb{R}$ is said to be a norm on x if it satisfies the following conditions
(1) $\|x\| \geq 0 \quad \forall x \in X$
(2) $\|x\|=0 \Leftrightarrow x=0$
(3) $\|\alpha x\|=|\alpha|\|x\|, \quad \forall x \in X$ (Homogenity of norm)
(4) $\|x+y\| \leq\|x\|+\|y\| \quad \forall x, y \in X$ (Triangle Inequality)

Example 1: The linear spaces \mathbb{R}, \mathbb{C} are both normed spaces with norm given by $\|x\|=|x|$.

Note 1: A norm $\|$.$\| on X$ defines a metric d on X given by $d(x, y)=\|x-y\|$.
Note that $d(x-y, 0)=\|(x-y)-0\|=\|x-y\|=d(x, y)$ and $d(a x, 0)=\|a x\|=|a|\|x\|=|a| d(x, 0)$.

Definition 1.2:[]

Let X be a normed space over the field \mathbb{F}.
(1) The open ball center at $x_{0} \in X$ with radius $r>0$ is the set $B_{r}\left(x_{0}\right)=\left\{x \in X:\left\|x-x_{0}\right\|<r\right\}$.
(2) A sequence $\left\{x_{n}\right\} \subset X$ is called convergent if $\exists x \in X$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$.
(3) A sequence $\left\{x_{n}\right\} \subset X$ is called Cauchy if $\forall \varepsilon>0, \quad \exists N \in \mathbb{N}$ such that if $n, m \geq N \Rightarrow\left\|x_{n}-x_{m}\right\|<\varepsilon$.
(4) The normed space X is complete if every Cauchy sequence in X is convergent in X.
(5) The normed space X is Banach space if X is complete.

Note 2: Let X be a normed space. Let $x_{0} \in X$, and $r>0$, then

$$
\begin{aligned}
B_{r}\left(x_{0}\right) & =\left\{x \in X:\left\|x-x_{0}\right\|<r\right\} \text { let } y=x-x_{0} \Leftrightarrow x=x_{0}+y \\
& =\left\{x_{0}+y:\|y\|<r\right\} \\
& =x_{0}+\{y:\|y\|<r\} \\
& =x_{0}+B_{r}(0)
\end{aligned}
$$

Thus the open ball center at any point in X is the translate of the ball center at 0 with the same radius. Also,

$$
\begin{aligned}
B_{r}(0) & =\{x \in X:\|x\|<r\} \\
& =\left\{x:\left\|\frac{x}{r}\right\|<1\right\} \quad \text { let } y=\frac{x}{r} \Leftrightarrow x=r y \\
& =\{r y:\|y\|<1\} \\
& =r\{y:\|y\|<1\} \\
& =r B_{1}(0)
\end{aligned}
$$

Hence $B_{r}\left(x_{0}\right)=x_{0}+B_{r}(0)=x_{0}+r B_{1}(0)$. Thus in any normed space we can consider the unit open ball.
Lemma 1: Let X be a normed space over \mathbb{F}. Let $\left\{x_{n}\right\},\left\{y_{n}\right\} \subset X$ such that $\lim _{n \rightarrow \infty} x_{n}=x \in X$ and $\lim _{n \rightarrow \infty} y_{n}=y \in X$, and let $\left\{a_{n}\right\} \subset \mathbb{F}$ such that $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{F}$. Then
(a) $|\|x\|-\|y\|| \leq\|x-y\|, \quad \forall x, y \in X$.
(b) $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=x+y$.
(c) $\lim _{n \rightarrow \infty} a_{n} x_{n}=a x$.

Proof:
(a)

$$
\begin{aligned}
\|x\| & =\|x-y+y\| \\
& \leq\|x-y\|+\|y\| \\
\|x\|-\|y\| & \leq\|x-y\| \\
\|y\| & =\|y-x+x\| \\
& \leq\|y-x\|+\|x\| \\
\|y\|-\|x\| & \leq\|y-x\|=\|x-y\| \\
-(\|x\|-\|y\|) & \leq\|x-y\| \\
\text { Thus }\|x\|-\|y\| & \geq-\|x-y\| \\
\text { Hence }-\|x-y\| & \leq\|x\|-\|y\| \leq\|x-y\|
\end{aligned}
$$

(b)

$$
\begin{aligned}
\left\|\left(x_{n}+y_{n}\right)-(x+y)\right\| & =\left\|x_{n}-x+y_{n}-y\right\| \\
& \leq\|x-n-x\|+\left\|y_{n}-y\right\| \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

(c) Since $\lim _{n \rightarrow \infty} a_{n}=a$, then $\exists M>0 \ni\left|a_{n}\right| \leq M \quad \forall n \geq 1$.

$$
\begin{aligned}
\left\|a_{n} x_{n}-a x\right\| & =\left\|a_{n} x_{n}-a_{n} x+a_{n} x-a x\right\| \\
& \leq\left\|a_{n} x_{n}-a_{n} x\right\|+\left\|a_{n} x-a x\right\| \\
& \leq\left|a_{n}\right|\left\|x_{n}-x\right\|+\left|a_{n}-a\right|\|x\| \\
& \leq M\left\|x_{n}-x\right\|+\left|a_{n}-a\right|\|x\| \quad \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Definition 1.3:[]

Let X be a normed space over the field \mathbb{F}. Let $\left\{x_{n}\right\} \subset X$ be a sequence and for each $n \geq 1$, let $s_{n}=\sum_{k=1}^{n} x_{k}$. The sequence $\left\{s_{n}\right\}$ is called the sequence of partial sums. The sequence $\left\{x_{n}\right\}$ is called summable to $s \in X$ if $\left\{s_{n}\right\}$ converges. Thus $\left\{x_{n}\right\}$ is called summable if $\lim _{n \rightarrow \infty}\left\|s_{n}-s\right\|=0$. The sequence $\left\{x_{n}\right\}$ is called absolutely summable if $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$.
Theorem 1.1: []
A normed space X is a Banach space iff every absolutely summable sequence in X is summable in X.
Proof: (\Rightarrow) Suppose that X is a Banach space. Let $\left\{x_{n}\right\}$ be an absolutely summable sequence in X.
Then $\sum_{n=1}^{\infty}\left\|x_{n}\right\|=M<\infty$. Hence for each $\varepsilon>0, \quad \exists \quad N \in \mathbb{N}$ such that $\sum_{n=N}^{\infty}\left\|x_{n}\right\|<\varepsilon$.
Now,

$$
\text { if } \begin{aligned}
n \geq m>N \Rightarrow\left\|s_{n}-s_{m}\right\| & =\left\|\sum_{k=m+1}^{n} x_{k}\right\| \\
& \leq \sum_{k=m+1}^{n}\left\|x_{k}\right\| \\
& \leq \sum_{k=N}^{\infty}\left\|x_{k}\right\|<\varepsilon .
\end{aligned}
$$

Thus $\left\{s_{n}\right\}$ is a Cauchy sequence in X, hence $\left\{s_{n}\right\}$ is convergent since X is Banach space. Therefore $\left\{x_{n}\right\}$ is summable. (\Leftarrow) Suppose each absolutely summable sequence in X is summable in X. Let $\left\{x_{n}\right\} \subset X$ be a Cauchy sequence in X. Now, since $\left\{x_{n}\right\}$ is Cauchy, $\exists n_{1} \in \mathbb{N}$ such that if $n, m \geq n_{1} \Rightarrow\left\|x_{n}-x_{m}\right\|<\frac{1}{2}$. Also, $\exists n_{2}^{\prime} \in \mathbb{N}$ such that if $n, m \geq$ $n_{2}^{\prime} \Rightarrow\left\|x_{n}-x_{m}\right\|<\frac{1}{2^{2}}$, and let $n_{2}>\max \left\{n_{1}, n_{2}^{\prime}\right\}$. Now, $n_{2}>n_{1}$ and if $n, m \geq n_{2} \Rightarrow\left\|x_{n}-x_{m}\right\|<\frac{1}{2^{2}}$. Hence $n_{1}, n_{2} \geq n_{2} \Rightarrow$ $\left\|x_{n_{2}}-x_{n_{1}}\right\|<\frac{1}{2^{2}}$. Continuing this way, we have for each $k \geq 2 \quad \exists n_{k+1}>n_{k}$ such that $\left\|x_{n_{k+1}}-x_{n_{k}}\right\|<\frac{1}{2^{k}}$. Now, $\left\{x_{n_{k}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$. Set $y_{0}=x_{n_{1}}$ and $y_{k}=x_{n_{k+1}}-x_{n_{k}} \quad \forall, k \geq 1$. Note that $\left\|y_{k}\right\|=\left\|x_{n_{k+1}}-x_{n_{k}}\right\|<\frac{1}{2^{k}}$ and $\sum_{i=1}^{k} y_{i}=x_{n_{k+1}}$. Now, $\sum_{k=0}^{\infty}\left\|y_{k}\right\|=\left\|y_{0}\right\|+\sum_{k=1}^{\infty}\left\|y_{k}\right\| \leq\left\|y_{0}\right\|+\sum_{k=1}^{\infty} \frac{1}{2^{k}}=\left\|y_{0}\right\|+1<\infty$. Thus $\left\{y_{k}\right\}$ is absolutely summable and hence it summable by assumption. Hence $\sum_{k=0}^{\infty} y_{k}=x \in X$. Now $\lim _{k \rightarrow \infty} x_{n_{k+1}}=\lim _{k \rightarrow \infty} \sum_{i=1}^{k} y_{i}=\sum_{i=0}^{\infty} y_{i}=x$. Thus $\lim _{k \rightarrow \infty} x_{k}=x \in X$. Thus, the Cauchy sequence $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$ convergent to x. Therefore $\lim _{n \rightarrow \infty} x_{n}=x \in X$. Hence X is a Banach space.

Example 2: Let p be a real number such that $1 \leq p<\infty . l_{p}$ is the space of all sequence $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{F} such that $\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty \quad\left(x=\left\{x_{n}\right\}_{n=1}^{\infty}\right.$ converges $)$. $l_{p}=\left\{x=\left.\left\{x_{n}\right\}_{n=1}^{\infty}\left|\sum_{n=1}^{\infty}\right| x_{n}\right|^{p}<\infty, \quad x_{n}, \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$ with the norm is given by $\|x\|_{p}=\sqrt[p]{\sum_{n=0}^{\infty}\left|x_{n}\right|}, \quad x=\left\{x_{n}\right\} \in l_{p}$ is a Banach space. To see that we will prove the tringle inequality and the completness. Let $x=\left\{x_{n}\right\}_{n=1}^{\infty}$ and $y=\left\{y_{n}\right\}_{n=1}^{\infty}$ in l_{p}, then using Minkowski Inequality. we have

$$
\begin{aligned}
\|x+y\|_{p} & =\sqrt[p]{\sum_{n=0}^{\infty}\left|x_{n}+y_{n}\right|^{p}} \\
& \leq \sqrt[p]{\sum_{n=0}^{\infty}\left|x_{n}\right|^{p}}+\sqrt[p]{\sum_{n=0}^{\infty}\left|y_{n}\right|^{p}} \\
& =\|x\|_{p}+\|y\|_{p}
\end{aligned}
$$

Let $\left\{x_{k}\right\}$, where $x_{k}=\left\{x_{n}^{(k)}\right\}$, be a Cauchy sequence in l_{p} such that $\sum_{n=1}^{\infty}\left|x_{n}^{(k)}\right|^{p}<\infty, \quad k \geq 1$. Now, for each $\varepsilon>0, \exists N \in \mathbb{N} \ni$ if $n, m \geq N \Rightarrow\left\|x_{n}-x_{m}\right\|_{p}=\sqrt[p]{\sum_{i=1}^{\infty}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|^{p}}<\frac{\varepsilon}{2}$. Now, $\left|x_{i}^{(n)}-x_{i}^{(m)}\right|=\sqrt[p]{\left|x_{i}^{(n)}-x_{i}^{(m)}\right| p} \leq\left\|x_{n}-x_{m}\right\|_{p}<\frac{\varepsilon}{2}$. Thus for each fixed $i(1 \leq i<\infty)$, the sequence $\left\{x_{i}^{(n)}\right\}$ is Cauchy in \mathbb{F} which is complete. Hence the sequence $\left\{x_{i}^{(n)}\right\}$ is convergent. Hence for each $1 \leq i<\infty, \quad \lim _{n \rightarrow \infty} x_{i}^{(n)}=x_{i} \in \mathbb{F}$. Now, let $x=\left\{x_{i}\right\}$. Now, if $n, m \geq N \Rightarrow\left\|x_{n}-x_{m}\right\|_{p}^{p}=\sum_{i=1}^{\infty}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|^{p}<\left(\frac{\varepsilon}{2}\right)^{p}$. Letting $m \rightarrow \infty$, we obtain, $\left\|x_{n}-x\right\|_{p} \leq \frac{\varepsilon}{2}<\varepsilon$. Hence $x_{n}-x=\left\{x_{i}^{(n)}-x_{i}\right\} \in l_{p}$ Since $x_{n}, x_{n}-x \in l_{p} \Rightarrow x=x_{n}+\left(x-x_{n}\right) \in l_{p}$. Thus $\left\{x_{k}\right\}$, convergent to $x \in l_{p}$. Hence l_{p} is a Banach space.

Example 3: Let a, b be two real numbers such that $a<b$. Consider $C([a, b])$ is the space of all continuous functions f over $[a, b]$,
$C([a, b])=\{f:[a, b] \rightarrow \mathbb{F} \mid f$ is continuous on $[a, b]\}$, with norm $\|f\|_{\infty}=\sup _{x \in[a, b]}|f(x)|$. Then $\left(C([a, b]),\|\cdot\|_{\infty}\right)$ is a Banach space. It is easy task to check that $\|\cdot\|_{\infty}$ is a norm. We will prove the completeness of $C([a, b])$. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $C([a, b])$. Then, for each $\varepsilon>0, \exists N \in \mathbb{N} \ni$ if $n, m \geq N \Rightarrow\left\|f_{n}-f_{m}\right\|_{\infty}=\sup _{x \in[a, b]}\left|f_{n}(x)-f_{m}(x)\right|<\frac{\varepsilon}{2}$. Thus, for a fixed $x_{0} \in[a, b]$, we have if $n, m \geq N \Rightarrow\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}=\sup _{x \in[a, b]}\left|f_{n}(x)-f_{m}(x)\right|<\frac{\varepsilon}{2}$. Hence the sequence $\left\{f_{n}\left(x_{0}\right)\right\}$ is a Cauchy sequence in \mathbb{F}, since \mathbb{F} is Banach space, then this sequence converges. Let $f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)$. Now, for each $x \in[a, b]$, let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Now, we have if $n, m \geq N \Rightarrow\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}=\sup _{x \in[a, b]} \mid f_{n}(x)-$ $f_{m}(x) \left\lvert\,<\frac{\varepsilon}{2} \quad \forall x \in[a, b]\right.$. Letting $m \rightarrow \infty$, we obtain, $\left\|f_{n}-f\right\|_{\infty} \leq \frac{\varepsilon}{2}<\varepsilon$ and since f_{n} is continuous and convergence is uniformly, then $f \in C([a, b])$. Therefore $C([a, b])$ is Banach space.

Example 4: Consider the space $C([-1,1])$ equipped with the norm $\|f\|_{1}=\int_{-1}^{1}|f(x)| d x$. We will show that $\left(C([-1,1]),\|\cdot\|_{1}\right)$ is not Banach space. Let $\left\{f_{n}\right\}$ be the sequence in $C([-1,1])$, where $f_{n}(x)= \begin{cases}1, & \text { if }-1 \leq x \leq 0 ; \\ -n x+1, & \text { if } 0<x<\frac{1}{n} ; \\ 0, & \text { if } \frac{1}{n}<x \leq 1\end{cases}$
Below the graphs of f_{n} and $f_{n}-f_{m}$ for $m>n$.

Figure 1

Figure 2

Now, Since

$$
\left\|f_{n}-f_{m}\right\|_{1}=\frac{1}{2 n}-\frac{1}{2 m} \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

hence $\left\{f_{n}\right\}$ is Cauchy sequence in $C([-1,1])$. Suppose there is $f \in C([-1,1])$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1}=0$. Hence

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1} \\
& =\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|f_{n}(x)-f(x)\right| d x \\
& =\lim _{n \rightarrow \infty}\left[\int_{-1}^{0}|1-f(x)| d x+\int_{0}^{1 / n}\left|f_{n}(x)-f(x)\right| d x+\int_{1 / n}^{1}|f(x)| d x\right]
\end{aligned}
$$

Hence $\int_{-1}^{0}|1-f(x)| d x=0 \Rightarrow|1-f(x)|=0 \quad \forall x \in[-1,0] \Rightarrow f(x)=1 \quad \forall x \in[-1,0]$.
Also, $\lim _{n \rightarrow \infty} \int_{1 / n}^{1}|f(x)| d x=0 \Rightarrow f(x)=0 \quad \forall x \in(0,1]$. Therefore $f(x)=\left\{\begin{array}{ll}1, & \text { if }-1 \leq x \leq 0 ; \\ 0, & \text { if } 0<x \leq 1 .\end{array} \quad \notin C([-1,1])\right.$.
Hence $\left(C([-1,1]),\|\cdot\|_{1}\right)$ is not Banach space.

Example 5: Consider the space $C^{1}([0,1])=\left\{f:[0,1] \rightarrow \mathbb{F}: f^{\prime} \in C([0,1])\right\}$ equipped with the norm $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|$. We will show that $\left(C^{1}([0,1]),\|\cdot\|_{\infty}\right)$ is not Banach space. Let $\left\{f_{n}\right\}$ be the sequence in $C^{1}([0,1])$, where $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n}}$ Below the graphs of some of f_{n} and some of $f_{n}-f_{m}$ for $m>n$.

Figure 3

Figure 4

Now, Since

$$
\left\|f_{n}-f_{m}\right\|_{\infty}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{m}} \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

hence $\left\{f_{n}\right\}$ is Cauchy sequence in $C^{1}([0,1])$. Now, $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\sqrt{x^{2}}=|x|$, hence $\left\{f_{n}(x)\right\}$ converges pointwise to $f(x)=|x|$.

$$
\begin{aligned}
\left\|f_{n}-f\right\|_{\infty} & =\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| \\
& =\sup _{x \in[0,1]}\left|\sqrt{x^{2}+\frac{1}{n}}-|x|\right| \\
& =\frac{1}{\sqrt{n}} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence the convergence is uniformly on $[0,1]$, but $f(x)=|x|$ is not differentiable at $x=0$. Thus $f(x)=|x| \notin C^{1}([0,1])$. Hence $\left(C^{1}([0,1]) .,\|\cdot\|_{\infty}\right)$ is not Banach space.

1.1. Subspaces and Quotient Spaces.

Definition 1.4:[Closed subspace]

Let X be a normed space and Y be a linear subspace of X. We say that Y is a closed subspace if Y is a closed subset of X under the norm topology.
Example 6: Consider $l_{\infty}=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty}\left|\sup _{n \in \mathbb{N}}\right| x_{n} \mid<\infty, \quad x_{n} \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$ with the norm $\left\|\left\{x_{n}\right\}_{n=1}^{\infty}\right\|=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$. Now, the space $c=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty} \mid \lim _{n \rightarrow \infty} x_{n} \in \mathbb{F}, \quad x_{n} \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$ is a closed subspace of l_{∞}.
Also, $c_{0}=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty} \mid \lim _{n \rightarrow \infty} x_{n}=0, \quad x_{n} \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$ is a closed subspace of c.
Theorem 1.2: []
Let Y be a subspace of a Banach space X. Then Y is a Banach subspace (complete) iff Y is closed.
Proof: (\Rightarrow) Suppose that Y is a Banach subspace. Let $x \in \bar{Y}$. Then, for each $n \geq 1$ there is $x_{n} \in\left(B_{1 / n}(x) \cap(Y \backslash\{x\})\right)$. Now, $\left\{x_{n}\right\} \subset Y$ such that $\left\|x_{n}-x\right\|<\frac{1}{n} \quad \forall n \geq 1$. Thus $\lim _{n \rightarrow \infty} x_{n}=x$. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in Y and must be converge in Y because Y is complete. Thus $x \in Y$ and hence Y is closed.
(\Leftarrow) Suppose that Y is closed. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in Y and hence in X. Since X is a Banach space then there is $x \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. Since $\left\{x_{n}\right\}$ is a sequence in Y and Y is closed, then $x \in \bar{Y}=Y$. Thus $\left\{x_{n}\right\}$ is convergent in Y. Thus Y is a Banach subspace.

Theorem 1.3: [Quotient Space]

Let X be a normed space over \mathbb{F} and let M be a closed subspace of X. Define $\|\cdot\|_{q}: \frac{X}{M} \rightarrow \mathbb{R}$ by $\|x+M\|_{q}=\inf _{m \in M}\|x+m\|$. Then $\left(\frac{X}{M},\|\cdot\|_{q}\right)$ is a normed space. Moreover, if X is a Banach space, then $\frac{X}{M}$ is a Banach space.
Proof: We know that the quotient space $\frac{X}{M}=\{x+M: x \in X\}$ is a liner space. We will show $\|.\|_{q}$ is a norm.

1. Since $\|x+m\| \geq 0 \quad \forall x \in X$ and $\forall m \in M$, then $\|x+M\|_{q} \geq 0$.
2. Note that if $x+M=M \Rightarrow\|x+M\|_{q}=\|0+M\|_{q}=\|0\|=0$. Now, let $\|x+M\|_{q}=0$ for some $x \in X$. Then, for each $n \geq 1, \exists m_{n} \in M \ni\left\|x+m_{n}\right\|<\|x+M\|+\frac{1}{n}=\frac{1}{n}$. Hence $\lim _{n \rightarrow \infty}\left\|x+m_{n}\right\|=0 \Rightarrow-m_{n} \rightarrow x$ as $n \rightarrow \infty$. But, since M is closed, then $x \in M \Rightarrow x+M=M$. Thus $\|x+M\|_{q}=0 \Leftrightarrow x+M=M$.
3. For $x \in X$ and $\alpha \in \mathbb{F}, \alpha \neq 0$, we have

$$
\begin{aligned}
\|\alpha(x+M)\|_{q} & =\|\alpha x+M\|_{q} \\
& =\inf _{m \in M}\|\alpha x+m\| \quad \text { let } m^{\prime}=\frac{m}{\alpha} \\
& =\inf _{m^{\prime} \in M}\left\|\alpha x+\alpha m^{\prime}\right\| \\
& =\inf _{m^{\prime} \in M}|\alpha|\left\|x+m^{\prime}\right\| \\
& =|\alpha| \inf _{m^{\prime} \in M}\left\|x+m^{\prime}\right\| \\
& =|\alpha|\|x+M\|_{q}
\end{aligned}
$$

4. For $x, y \in X$, we have

$$
\begin{aligned}
\|(x+M)+(y+M)\|_{q} & =\|(x+y)+M\|_{q} \\
& =\inf _{m \in M}\|(x+y)+m\| \quad \text { let } m=m_{1}+m_{2}, \quad m_{1}, m_{2} \in M \\
& =\inf _{m_{1}, m_{2} \in M}\left\|\left(x+m_{1}\right)+\left(y+m_{2}\right)\right\| \\
& \leq \inf _{m_{1}, m_{2} \in M}\left\{\left\|x+m_{1}\right\|+\left\|y+m_{2}\right\|\right\} \\
& \leq \inf _{m_{1} \in M}\left\|x+m_{1}\right\|+\inf _{m_{2} \in M}\left\|y+m_{2}\right\| \\
& =\|x+M\|_{q}+\|y+M\|_{q}
\end{aligned}
$$

Suppose that X is a Banach space. Let $\left\{x_{n}+M\right\}$ be a Cauchy sequence in $\frac{X}{M}$. Now, $\exists n_{1} \in \mathbb{N} \ni$ if $n, m \geq n_{1} \Rightarrow$ $\left\|\left(x_{n}+M\right)-\left(x_{m}+M\right)\right\|_{q}<\frac{1}{2}$. Also, $\exists n_{2}^{\prime} \in \mathbb{N} \ni$ if $n, m \geq n_{2}^{\prime} \Rightarrow\left\|\left(x_{n}+M\right)-\left(x_{m}+M\right)\right\|_{q}<\frac{1}{2^{2}}$. Choose $n_{2}>\max \left\{n_{1}, n_{2}^{\prime}\right\}$, we have $n_{2}>n_{1}$ and $n_{1}, n_{2} \geq n_{1} \Rightarrow\left\|\left(x_{n_{2}}+M\right)-\left(x_{n_{1}}+M\right)\right\|_{q}<\frac{1}{2}$. Continuing this way we have a subsequence $\left\{x_{n_{k}}+M\right\}$ of $\left\{x_{n}+M\right\}$ such that $n_{k+1}>n_{k}$ and $\left\|\left(x_{n_{k+1}}+M\right)-\left(x_{n_{k}}+M\right)\right\|_{q}<\frac{1}{2^{k}}$. Now, choose $y_{1} \in x_{n_{1}}+M$, then $y_{1}+M=x_{n_{1}}+M$ and since $\left\|\left(x_{n_{2}}+M\right)-\left(y_{1}+M\right)\right\|_{q}=\left\|\left(x_{n_{2}}+M\right)-\left(x_{n_{1}}+M\right)\right\|_{q}<\frac{1}{2}$, then there exist $y_{2} \in x_{n_{2}}+M$ such that $\left\|y_{2}-y_{1}\right\|<\frac{1}{2}$. Proceeding in this way, we have a sequence $\left\{y_{k}\right\}$ in X such that $y_{k}+M=x_{n_{k}}+M$ and $\left\|y_{k+1}-y_{k}\right\|<\frac{1}{2^{k}} \quad \forall k \geq 1$. Let $k>r$, then

$$
\begin{aligned}
\left\|y_{k}-y_{r}\right\| & =\left\|\left(y_{k}-y_{k-1}\right)+\left(y_{k-1}-y_{k-2}\right)+\cdots+\left(y_{r+1}-y_{r}\right)\right\| \\
& \leq\left\|\left(y_{k}-y_{k-1}\right)\right\|+\left\|y_{k-1}-y_{k-2}\right\|+\cdots+\left\|y_{r+1}-y_{r}\right\| \\
& <\frac{1}{2^{k-1}}+\frac{1}{2^{k-2}}+\cdots+\frac{1}{2^{r}} \\
& <\frac{1}{2^{r-1}}
\end{aligned}
$$

Therefore $\left\{y_{k}\right\}$ is a Cauchy sequence in X. Since X is Banach space there is $y \in X$ such that $\lim _{k \rightarrow \infty}\left\|y_{k}-y\right\|=0$. Now, $\left\|\left(x_{n_{k}}+M\right)-(y+M)\right\|_{q}=\left\|\left(y_{k}+M\right)-(y+M)\right\|_{q}=\left\|\left(y_{k}-y\right)+M\right\|_{q} \leq\left\|y_{k}-y\right\| \rightarrow 0$ as $k \rightarrow \infty$. Hence $\lim _{k \rightarrow \infty}\left(x_{n_{k}}+M\right)=$ $y+M \in \frac{X}{M}$. Now, the Cauchy sequence $\left\{x_{n}+M\right\}$ has a convergent subsequence in $\frac{X}{M}$. Hence $\lim _{n \rightarrow \infty}\left(x_{n}+M\right)=y+M \in \frac{X}{M}$. Thus $\frac{X}{M}$ is Banach space

EXERCISES FOR SECTION 1

In problems 1-5 prove that the given space is Banach space.

1. $l_{\infty}=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty}: \sup _{n \in \mathbb{N}}\left|x_{n}\right|<\infty, \quad x_{n} \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$ with the norm $\left\|\left\{x_{n}\right\}_{n=1}^{\infty}\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$.
2. $c=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty}: \lim _{n \rightarrow \infty} x_{n} \in \mathbb{F}, \quad x_{n} \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$ with the norm $\left\|\left\{x_{n}\right\}_{n=1}^{\infty}\right\|_{\infty}=\sup _{n \in \mathbb{N}}^{n \in \mathbb{N}}\left|x_{n}\right|$.
3. $c_{0}=\left\{x=\left\{x_{n}\right\}_{n=1}^{\infty}: \lim _{n \rightarrow \infty} x_{n}=0, \quad x_{n} \in \mathbb{F}, \forall n \in \mathbb{N}\right\}$ with the norm $\left\|\left\{x_{n}\right\}_{n=1}^{\infty}\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$.
4. $L_{p}([a, b])=\left\{f:[a, b] \rightarrow \mathbb{F}: \int_{a}^{b}|f|^{p}<\infty\right\}$ with the norm $\|f\|_{p}=\sqrt[p]{\int_{a}^{b}|f(x)| d x}$.
5. $C^{1}([0,1])=\left\{f:[0,1] \rightarrow \mathbb{F}: f^{\prime} \in C([0,1])\right\}$ with the norm $\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|+\sup _{x \in[0,1]}\left|f^{\prime}(x)\right|$.
6. Let X be a normed space and M be a closed subspace of X. Suppose that M and $\frac{X}{M}$ are Banach spaces. Prove that X is a Banach space.
7. Consider the Banach space $C([0,1])$ with the sup-norm and let $M=\{f \in C([0,1]): f(0)=0\}$ prove that M is closed subspace and $\frac{C([0,1])}{M} \cong \mathbb{F}$.
