THE FINAL EXAMIATION OF PHYSICS 342, 16/11/1423

TIME: TWO HOURS

Q1
a- In the photoelectric experiment, the kinetic energy of the electron is 2.2 eV for radiation of $200 t w n$ and
1.0 eV for radiation of 248 tm . Use these data to calculate the cutoff wavelength and the Planck's constant
b- A black cavity is placed in an oven of a temperature of 1650 k . What is the value of the maximum
wavelength and what rate does energy escape from the cavity through a hole in its surface of a diameter of

$$
1.0 \mathrm{~mm} \text { ? }
$$

Q2
a- Two traveling waves with $\lambda_{1}=1 \mathrm{~m} / \mathrm{s}$ and $\lambda_{2}=10 / 9 \mathrm{~m} / \mathrm{s}, \nu_{1}=3 \mathrm{~m} / \mathrm{s}$ and $v_{2}=2.5 \mathrm{~m} / \mathrm{s}$. What are the group velocity, v_{g}, and the phase velocity, v_{p}, of their superposition (hint: $v=\frac{a p}{k}$)?
b- Show that $V_{g}=v_{y}-\lambda \frac{d v_{r}}{d \lambda}$

Q3
Use the Schrodinger equation for the harmonic oscillator with the wave function $\Psi=a x e^{-\alpha x^{2}}$ to find the
parameter a and the energy, E , of the harmonic oscillator.
a- Given the wave function $\Psi^{\prime}(x)=A \sin \frac{n \pi x}{L}, 0 \leq x \leq L$. Obtain the value of the constant A, what we call it ?
b- What is the probability of finding the particle in the region $0 \leq x \leq \frac{L}{4}$?
c- In the Thomson model, derive the deflection angle and show that $\theta_{\max }=\frac{z k R^{2}}{m v^{2}}, \mathrm{z}$ is the α-particle charge

$$
\text { and } k=\frac{Z e^{2}}{4 \pi \varepsilon_{0} R^{3}} \text {. }
$$

Q5

a- The angular momentum of the electron in the hydrogen atom is given by 2.15 $\times 10^{-34} \mathrm{~J} . \mathrm{s}$. Find its velocity and the orbital radius.
b- What angles does \hat{E} vector make with the Z -axis when $l=2$. Compare the angular momentum in this case with that of Bohr.
c- Define and derive the Zeeman effect.
d- Compute the change in the wavelength of the $3 p \rightarrow 2 s$ photon when a hydrogen atom is placed in a magnetic field of 4 T .

$$
h=6.625 \times 10^{-34} \mathrm{~J}, s, e=1.602 \times 10^{-19} \mathrm{C}, m=9.1 \times 10^{-31} \mathrm{~kg}
$$

Q1
Use the Hellmann-Feynman theorem to obtain $\left\langle\frac{1}{r^{2}}\right\rangle$ for the hydrogen atom. Where the Hamiltonian is

$$
\hat{H}=-\left(\frac{d 2}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right)+\frac{l(l+1)}{2 r}-\frac{1}{r} \text { and } E=-\frac{1}{2 n^{2}}, n=k+l+1
$$

b- Which of the following potentials can be considers as solutions of the Thomas-Fermi equation and why?

$$
\Phi(x) 1-\alpha x+\beta x^{3 / 2}+\ldots \ldots, \Phi(x)=a x e^{-\alpha x}, \ldots, \Phi(x)=\left(a e^{-\alpha x}+b e^{-\alpha x}\right)
$$

Q2
Calculate the energies of the harmonic oscillator to the second order, who's Hamiltonian is $H=H_{0}+a e^{-a a^{2}}$.

The wave functions are $\Psi_{0}=A e^{-2 x^{2}}, \Psi 1=B x e^{-x x^{2}} \ldots \ldots . .$.

Q3

	1	i	1
Given the matrix	$-i$	0	0
1	0	0	

a- Obtain its cofactor and its inverse.
b- What are the eigenvalue and eigenvector?

Q4
Given the scattering amplitude in the form

$$
f(\Theta)=\frac{1}{k} \sum_{i=0}^{\infty}(2 l+1) e^{i \delta_{l}} \sin \delta_{i} F_{l}(\cos \Theta)
$$

What is the total scattering cross section? Show that $\sigma=\frac{4 \pi}{k} \operatorname{Im}[f(0)]$
b-For a finite square well the potential is $\mathrm{V}(\mathrm{r})=\begin{array}{cc}-V_{0} & , r<a \\ 0 & , r>a\end{array}$. Solve the Schrodinger equation inside and outside the well to obtain the total cross section ($l=0$) .

Q5-

Use the Born approximation to find the differential cross section and the total cross section when a projectile
is scattered by a potential of the form $\mathrm{V}(r)=-\frac{V_{0}}{r_{0}}\left(r+r_{0}\right), 0 \leq r \leq r_{0}$.

Q6-
A system is under a potential of the form $\mathrm{V}(\mathrm{x})=\gamma|x|^{3 / 2}, \gamma>0$.

Use the WKB method to obtain the energy of the system.

Q7- Write names of four books you have used during this course.

Hint: $1-\int_{0}^{\infty} e^{-3 x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{b}}$,
$\int_{0}^{1} t^{y-1}(1-t)^{w-1} d t=\frac{\Gamma(y) \Gamma(w)}{\Gamma(y+w)}$

THE FINAL EXAMIATION OF PHYSICS 353, 7/4/1424H
TIME: TWO HOURS

Q1

Show that $\int_{-\infty}^{\infty} f(y) \delta(y) d y=f(0)$ and $\int_{-\infty}^{\infty} \delta(y) d y=1$ and $\delta(\alpha y)=\frac{\delta(y)}{a}$, a is a constant

Q2

Use any learned method to obtain an explicit form of $\Psi_{321}(r, \theta, \phi)=R_{32}(r) Y_{2}^{1}(\theta, \phi)$

What is the energy of an electron in this state? What is its angular momentum?

Q3
The energy eigenvalues of a simple harmonic oscillator is given by
$E_{n}=\operatorname{Han}_{6}\left(n+\frac{1}{2}\right), n=1,2,3$,
Show that $n \geq-\frac{1}{2}$.

The potential of a simple harmonic oscillator is $V(x)=\frac{1}{2} k x^{2}$. Show that $\left\langle V>=\frac{\hbar a_{0}}{2}\left(n+\frac{1}{2}\right)\right.$.

Show that $a^{+}|n\rangle=\sqrt{n+1}|n+1\rangle$

Q4
Use the raising operator $L^{+}=\hbar e^{i \psi}\left(\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right)$ to obtain the spherical harmonics $Y_{2}^{2}(\theta, \phi)$.

Q5
If $\frac{d\langle A>}{d t}=\frac{i}{\hbar}<\Psi|\hat{H}, A| \Psi^{\prime}>$, Show that $\frac{d\langle x\rangle}{d t}=\bar{v}$, where \bar{v} is the average velocity of a particle.

Q6

Show that for a wave function of the form $\Psi(x, t)=A e^{i f(x, t)}$, the current density takes the form

$$
J=\frac{\hbar}{m}|A|^{2} \frac{\partial f}{\partial x}
$$

Q7
For the step potential with $V=2 E$, find the transmission and the reflection coefficients of a traveling
wave of energy E . Show that $\mathrm{T}+\mathrm{R}=1$

Q8
For the hydrogen atom, take the Hamiltonian of the form
$H=\left(p^{2} c^{2}+m^{2} c^{4}\right)^{11 / 2}-m c^{2}+V, \mathrm{~V}=-\frac{Z e^{2}}{r}$, and

Obtain its total energy.

