Research Interests
[1]
A.R. Khan, N.
Hussain and M.A. Shahid,
Strong uniqueness in metrizable topological vector spaces, Bull
Malaysian Mathematical Society (Second series) 17, 1994, 21-27.
[2]
A.R. Khan, M. Aslam and N. Hussain, Some
best approximation results in locally convex spaces, Approx. Theory and Appl.,
12, 1996, 29-36.
[3]
A.R. Khan, N.
Hussain and M. Aslam, Mann
iterative construction of fixed points in locally convex spaces, J. Natural Sci. and Maths., 36, 1997, 155-159.
[4]
A.R. Khan, N. Hussain and M. Akram,
On open mapping and closed graph theorems, Punjab University J. of Mathematics, 31, 1998, 95-102.
[5]
A.R. Khan, N. Hussain and L. A.
Khan, A note on Kakutani type fixed point theorems, Internat. J Math. &
Math. Sci. 24, 2000, 231-235.
[6]
A.R. Khan, N. Hussain and
A.B.Thaheem, Applications of fixed point theorems to invariant approximation,
Approx. Theory and Appl., 16, 2000, 48-55.
[7]
A. R. Khan and N.
Hussain, Best approximation
and fixed point results, Indian J. Pure & Appl. Math. 31, 2000,
983-987.
[8]
A. R. Khan and N.
Hussain, Fixed point
and best approximation theorems for *-nonexpansive maps, Punjab Univ. J.
Math., 33, 2000, 135-144.
[9]
A. R. Khan and N.
Hussain, Iterative approximation of fixed
points of nonexpansive maps, Scien. Math. Japon.,
54, 2001, 503-511.
[10]
A.R. Khan and N.
Hussain, Random fixed points for *-nonexpansive random operators,
J. Appl. Math. and Stochastic Anal. 14,
2001, 341-349.
[11]
A. R. Khan and N. Hussain, An
extension of a theorem of Sahab, Khan and Sessa, Internat. J. Math. & Math.
Sci., 27, 2001, 701-706.
[12]
A. R. Khan and N. Hussain, Random
fixed point theorems for *-nonexpansive
operators in Frechet spaces, J. Korean Math. Soc.
39, 2002, 51-60.
[13]
A.R. Khan and N. Hussain, Random
approximations and random fixed points for
*-nonexpansive maps, Math. Sci. Res. J. 6, 2002, 174-182.
[14]
A.R. Khan, A. B. Thaheem and N.
Hussain, Random fixed points and random approximations in nonconvex domains, J.
Appl. Math. Stoch. Anal. 15, 2002, 263-270.
[15]
A. R. Khan, A. Bano and N.
Hussain, Common fixed points in best approximation theory, Internat. J. Pure Appl. Math. 2, 2002, 411-426.
[16]
A. R. Khan, A. Latif , N. Hussain and
A. Bano, Coincidence point results
in locally convex
spaces, Internat. J. Pure
and Appl. Math. 3, 2002, 413-423.
[17]
A. R. Khan, A. Latif , N. Hussain and
A. Bano, Coincidence point results
in locally convex
spaces, Internat. J. Pure
and Appl. Math. 3, 2002, 413-423.
[18]
N. Hussain
and A.R. Khan, Common fixed point results in best approximation theory, Applied Math. Lett. 16, 2003, 575-580.
[19]
N. Hussain and A.R.Khan, Common
fixed points and best approximation in p-normed
spaces, Demonstratio. Math. 36, 2003, 675-681.
[20]
A. R. Khan and N. Hussain. Characterizations of random approximations in
locally convex spaces, Arch. Math.(BORNO) 39, 2003, 271-275.
[21]
N. Hussain
and A. R. Khan, Random fixed points for *-nonexpansive multivalued maps, Random Oper. and Stoch. Eqs. 11, 2003,
243-254.
[22]
I.
Beg, N. Hussain and A.R. Khan, Fixed point,
almost fixed point and best approximation
of nonexpansive multivalued mapping in
Banach spaces, Adv. Math. Sci. Appl.
13, 2003, 83-111.
[23]
A. R. Khan, A. B. Thaheem and N.
Hussain, A stochastic version of Ky Fan's best approximation theorem, J. Appl.
Math. Stoch. Anal. 16, 2003, 275-282.
[24]
N. Hussain and A. R. Khan,
Applications of the best approximation operator to *- nonexpansive maps in
Hilbert spaces, Numer. Funct. Anal.
Optimiz. 24 (3-4), 2003, 327-338.
[25]
A.R. Khan and N.
Hussain, Random coincidence point theorem in Frechet spaces with
applications, Stoch. Anal.& Appl. 22, 2004, 155-167.
[26]
I. Beg, A. R. Khan and N. Hussain, Approximation
of *-nonexpansive random multivalued operators on Banach spaces, J. Aust.
Math. Soc. 76, 2004, 51-66.
[27]
A.
R. Khan, N. Hussain and A. B. Thaheem, Some generalizations of Ky Fan's
best approximation theorem,
Analysis in Theory and Appl. 20, 2004, 189-198.
[28]
A.R. Khan, A. Latif, A. Bano and N. Hussain, Some
results on common fixed points and best
approximation, Tamkang J. Math. 36, 2005, 33-38.
[29]
N. Hussain, Donal O’Regan and Ravi P. Agarwal, Common fixed
point and invariant approximation
results on non-starshaped domains, Georgian Math.
J. 12, 2005, 659-669.
[30]
N. Hussain, Common fixed point and
invariant approximation results, Demonstratio Math. 39, 2006, 389-400.
[31]
N. Hussain, Generalized I-nonexpansive maps and invariant
approximation results in p-normed
spaces, Analysis in Theory and
Appl. 22, 2006, 72-80.
[32]
N. Hussain, and V. Berinde, Common fixed point
and invariant approximation results in certain metrizable topological
vector spaces, Fixed Point Theory Appl.
(2006), 1-13.
[33]
N. Hussain
and G. Jungck, Common fixed point and invariant approximation results for noncommuting
generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl. 321(2006), 851-861.
[34]
N. Shahzad and N.
Hussain, Deterministic and random coincidence results for
f-nonexpansive maps, J. Math. Anal. Appl. 323(2006), 1038-1046.
[35]
N. Hussain, Common fixed point and
invariant approximation results, Demonstratio
Math. 39(2)(2006), 389-400.
[36]
N. Hussain, Coincidence points for multivalued maps on
non-starshaped domain, Demonstratio Math. 39(3)(2006), 579-584.
[37] N. Hussain and B. E. Rhoades,
C_q-commuting maps and invariant approximations, Fixed Point Theory Appl. 2006(2006), 1-9.
[38]
A.R. Khan, F. Akbar, N. Sultana and N. Hussain,
Coincidence and invariant
approximation theorems for generalized f-nonexpansive multivalued
mappings, Internat. J. Math.
Math. Sci. 2006(2006), 1-18.
[39]
N. Hussain, Generalized I-nonexpansive maps and invariant
approximation results in p-normed spaces,
Anal. Theory and Appl. 22( 2006), 72-80.
[40]
G.
Jungck and N. Hussain, Compatible maps and invariant approximations, J.
Math. Anal. Appl. 325(2007), 1003-1012.
[41] Donal O’Regan and N. Hussain, Generalized I-contractions and pointwise R-subweakly commuting maps, Acta Math. Sinica 23, No. 8(2007), 1505-1508.
[42] A.R. Khan, A.A. Domlo and N.
Hussain, Coincidences of Lipschitz type hybrid maps and invariant approximation, Numer. Funct. Anal. Optimiz., 28(9-10)(2007),
165-1177.
[43] N. Hussain, A. Latif and S. Al-Mezel, Noncommuting maps and invariant
approximations, Demonstratio
Mathematica, 40 No. 4 (2007), 895-905.
[44] N. Hussain, B.E. Rhoades and G. Jungck,
Common fixed point and invariant approximation results for Gregus type $I$-contractions,
Numer.l Funct. Anal. Optimiz.,
28(9-10)(2007), 1139-1151.
[45] S.A. Al-Mezel and N.
Hussain, On common fixed point and approximation results of Gregus type, International Mathematical Forum,
V. 2, 37(2007), 1839 - 1847.
[46] N. Hussain, Common fixed points in best
approximation for Banach operator pairs with Ciric type
I-contractions, J. Math. Anal. Appl., 338(2008), 1351-1363.
[47] H.K. Pathak, N. Hussain, Common fixed points for Banach operator pairs with
applications, Nonlinear Analysis
69 (2008) 2788–2802.
[48] N. Hussain, V. Berinde and N.
Shafqat, Common fixed point and approximation results for generalized $\phi$-contractions, Fixed
Point Theory, 9(1)(2008).
[49]
S. H.
Khan and N. Hussain, Convergence
theorems for nonself asymptotically nonexpansive mappings, Computers and Mathematics
with Applications, 55 (2008) 2544–2553.
[50]
I. Beg and N. Hussain, Invariant approximation in Menger convex metric space,
Nonlinear Funct. Anal. and Appl., (in
press)
[51]
L.Ciric, N.Hussain, F.Akbar and
J.S.Ume, Common fixed points for Banach operator pairs from the set of best
approximations, Bull. Belgian Math. Soc.,(in press)
[52]
N. Hussain and F. Akbar,
Generalized I-nonexpansive maps and invariant
approximation results, Southeast
Asian Bull. Math. (in press).